File size: 20,023 Bytes
46fccfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
from typing import Literal
import spaces
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes
from utils.gradient import gradient_processing
from utils.minmax import preprocess as minmax_preprocess
from utils.ela import genELA as ELA
from utils.wavelet import wavelet_blocking_noise_estimation
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
header_style = {
"textAlign": 'center',
"color": '#fff',
"height": 64,
"paddingInline": 48,
"lineHeight": '64px',
"backgroundColor": '#4096ff',
}
content_style = {
"textAlign": 'center',
"minHeight": 120,
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#0958d9',
}
sider_style = {
"textAlign": 'center',
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#1677ff',
}
footer_style = {
"textAlign": 'center',
"color": '#fff',
"backgroundColor": '#4096ff',
}
layout_style = {
"borderRadius": 8,
"overflow": 'hidden',
"width": 'calc(100% - 8px)',
"maxWidth": 'calc(100% - 8px)',
}
# Model paths and class names
MODEL_PATHS = {
"model_1": "haywoodsloan/ai-image-detector-deploy",
"model_2": "Heem2/AI-vs-Real-Image-Detection",
"model_3": "Organika/sdxl-detector",
"model_4": "cmckinle/sdxl-flux-detector_v1.1",
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22",
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
"model_7": "date3k2/vit-real-fake-classification-v4"
}
CLASS_NAMES = {
"model_1": ['artificial', 'real'],
"model_2": ['AI Image', 'Real Image'],
"model_3": ['AI', 'Real'],
"model_4": ['AI', 'Real'],
"model_5": ['Realism', 'Deepfake'],
"model_5b": ['Real', 'Deepfake'],
"model_6": ['ai_gen', 'human'],
"model_7": ['Fake', 'Real'],
}
# Load models and processors
def load_models():
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"])
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7
clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 = load_models()
@spaces.GPU(duration=10)
def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id, feature_extractor=None):
try:
if feature_extractor:
inputs = feature_extractor(img_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs = clf(**inputs)
logits = outputs.logits
probabilities = softmax(logits.cpu().numpy()[0])
result = {class_names[i]: probabilities[i] for i in range(len(class_names))}
else:
prediction = clf(img_pil)
result = {pred['label']: pred['score'] for pred in prediction}
result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)]
logger.info(result_output)
for class_name in class_names:
if class_name not in result:
result[class_name] = 0.0
if result[class_names[0]] >= confidence_threshold:
label = f"AI, Confidence: {result[class_names[0]]:.4f}"
result_output.append('AI')
elif result[class_names[1]] >= confidence_threshold:
label = f"Real, Confidence: {result[class_names[1]]:.4f}"
result_output.append('REAL')
else:
label = "Uncertain Classification"
result_output.append('UNCERTAIN')
except Exception as e:
label = f"Error: {str(e)}"
result_output = [model_id, model_name, 0.0, 0.0, 'ERROR'] # Ensure result_output is assigned in case of error
return label, result_output
@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
if not isinstance(img, Image.Image):
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
if img.mode != 'RGB':
img_pil = img.convert('RGB')
else:
img_pil = img
img_pil = transforms.Resize((256, 256))(img_pil)
img_pilvits = transforms.Resize((224, 224))(img_pil)
label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2)
label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3, feature_extractor_3)
label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4, feature_extractor_4)
label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
label_6, result_6output = predict_with_model(img_pilvits, clf_6, CLASS_NAMES["model_6"], confidence_threshold, "Swin Midjourney/SDXL", 7)
label_7, result_7output = predict_with_model(img_pilvits, clf_7, CLASS_NAMES["model_7"], confidence_threshold, "Vit", 7)
combined_results = {
"SwinV2/detect": label_1,
"ViT/AI-vs-Real": label_2,
"Swin/SDXL": label_3,
"Swin/SDXL-FLUX": label_4,
"prithivMLmods": label_5,
"prithivMLmods-2-22": label_5b,
"SwinMidSDXL": label_6,
"Vit": label_7
}
print(combined_results)
combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput, result_6output, result_7output]
return img_pil, combined_outputs
# Define a function to generate the HTML content
def generate_results_html(results):
def get_header_color(label):
if label == 'AI':
return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200'
elif label == 'REAL':
return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200'
elif label == 'UNCERTAIN':
return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200'
elif label == 'MAINTENANCE':
return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200'
else:
return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200'
def generate_tile_html(index, result, model_name, contributor, model_path):
label = result[-1]
header_colors = get_header_color(label)
real_conf = result[2]
ai_conf = result[3]
return f"""
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {header_colors[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{header_colors[4]}">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL {index + 1}:</span>
<span
class="flex w-30 mx-auto tracking-wide items-center justify-center rounded-full {header_colors[2]} px-1 py-0.5 {header_colors[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if label == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="text-base whitespace-nowrap leading-normal font-bold text-center self-center align-middle py-px">{label}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {real_conf * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{real_conf:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {ai_conf * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{ai_conf:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">{model_name}</h4>
<div class="text-xs font-mono">Real: {real_conf:.4f}, AI: {ai_conf:.4f}</div>
<div class="card-footer">
<a href="https://huggingface.co/{model_path}" target="_blank" class="mt-2 text-xs text-nowrap nowrap" style="font-size:0.66rem !important;">by @{contributor}</a>
</div>
</div>
</div>
"""
html_content = f"""
<link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet">
<div class="container mx-auto">
<div class="grid xl:grid-cols-4 md:grid-cols-4 grid-cols-1 gap-1">
{generate_tile_html(0, results[0], "SwinV2 Based", "haywoodsloan", MODEL_PATHS["model_1"])}
{generate_tile_html(1, results[1], "ViT Based", "Heem2", MODEL_PATHS["model_2"])}
{generate_tile_html(2, results[2], "SDXL Dataset", "Organika", MODEL_PATHS["model_3"])}
{generate_tile_html(3, results[3], "SDXL + FLUX", "cmckinle", MODEL_PATHS["model_4"])}
{generate_tile_html(4, results[4], "Vit Based", "prithivMLmods", MODEL_PATHS["model_5"])}
{generate_tile_html(5, results[5], "Vit Based, Newer Dataset", "prithivMLmods", MODEL_PATHS["model_5b"])}
{generate_tile_html(6, results[6], "Swin, Midj + SDXL", "ideepankarsharma2003", MODEL_PATHS["model_6"])}
{generate_tile_html(7, results[7], "ViT", "temp", MODEL_PATHS["model_7"])}
</div>
</div>
"""
return html_content
def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
if augment_methods:
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
else:
img_pil = img
img_pil, results = predict_image(img_pil, confidence_threshold)
img_np = np.array(img_pil) # Convert PIL Image to NumPy array
img_np_og = np.array(img) # Convert PIL Image to NumPy array
gradient_image = gradient_processing(img_np) # Added gradient processing
minmax_image = minmax_preprocess(img_np) # Added MinMax processing
# First pass - standard analysis
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
# Second pass - enhanced visibility
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
html_content = generate_results_html(results)
return img_pil, forensics_images, html_content
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as iface:
with ms.Application() as app:
with antd.ConfigProvider():
antdx.Welcome(
icon=
"https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png",
title="Welcome to Project OpenSight",
description=
"The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** "
)
with gr.Tab("๐ Detection Models Eval / Playground"):
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil')
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"):
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
predict_button = gr.Button("Predict")
augment_button = gr.Button("Augment & Predict")
image_output = gr.Image(label="Processed Image", visible=False)
with gr.Column(scale=2):
# Custom HTML component to display results in 5 columns
results_html = gr.HTML(label="Model Predictions")
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery")
outputs = [image_output, forensics_gallery, results_html]
# Show/hide rotate slider based on selected augmentation method
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
predict_button.click(
fn=predict_image_with_html,
inputs=inputs,
outputs=outputs
)
augment_button.click( # Connect Augment button to the function
fn=predict_image_with_html,
inputs=[
image_input,
confidence_slider,
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values
rotate_slider,
noise_slider,
sharpen_slider
],
outputs=outputs
)
predict_button.click(
fn=None,
js="() => {document.getElementById('project_accordion').open = false;}", # Close the project accordion
inputs=[],
outputs=[]
)
with gr.Tab("๐ Community Forensics Preview"):
temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces")
# preview # no idea if this will work
with gr.Tab("๐ฅ Leaderboard"):
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soonโข")
# Launch the interface
iface.launch() |