Spaces:
Sleeping
Sleeping
Update deepfake_api.py
Browse files- deepfake_api.py +213 -136
deepfake_api.py
CHANGED
|
@@ -1,136 +1,213 @@
|
|
| 1 |
-
# === FASTAPI BACKEND (main.py) ===
|
| 2 |
-
|
| 3 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 4 |
-
from fastapi.responses import JSONResponse
|
| 5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
-
from transformers import pipeline
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import io
|
| 9 |
-
import torch
|
| 10 |
-
import numpy as np
|
| 11 |
-
import cv2
|
| 12 |
-
import base64
|
| 13 |
-
|
| 14 |
-
app = FastAPI()
|
| 15 |
-
|
| 16 |
-
app.add_middleware(
|
| 17 |
-
CORSMiddleware,
|
| 18 |
-
allow_origins=["*"],
|
| 19 |
-
allow_credentials=True,
|
| 20 |
-
allow_methods=["*"],
|
| 21 |
-
allow_headers=["*"],
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 25 |
-
|
| 26 |
-
MODELS_CONFIG = {
|
| 27 |
-
"SwinV2 Based": {"path": "haywoodsloan/ai-image-detector-deploy", "weight": 0.15},
|
| 28 |
-
"ViT Based": {"path": "Heem2/AI-vs-Real-Image-Detection", "weight": 0.15},
|
| 29 |
-
"SDXL Dataset": {"path": "Organika/sdxl-detector", "weight": 0.15},
|
| 30 |
-
"SDXL + FLUX": {"path": "cmckinle/sdxl-flux-detector_v1.1", "weight": 0.15},
|
| 31 |
-
"DeepFake v2": {"path": "prithivMLmods/Deep-Fake-Detector-v2-Model", "weight": 0.15},
|
| 32 |
-
"Midjourney/SDXL": {"path": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", "weight": 0.10},
|
| 33 |
-
"ViT v4": {"path": "date3k2/vit-real-fake-classification-v4", "weight": 0.15},
|
| 34 |
-
}
|
| 35 |
-
|
| 36 |
-
models = {}
|
| 37 |
-
for name, config in MODELS_CONFIG.items():
|
| 38 |
-
try:
|
| 39 |
-
models[name] = pipeline("image-classification", model=config["path"], device=device)
|
| 40 |
-
except Exception as e:
|
| 41 |
-
print(f"Failed to load model {name}: {e}")
|
| 42 |
-
|
| 43 |
-
def pil_to_base64(image):
|
| 44 |
-
buffered = io.BytesIO()
|
| 45 |
-
image.save(buffered, format="JPEG")
|
| 46 |
-
return "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 47 |
-
|
| 48 |
-
def gen_ela(img_array, quality=90):
|
| 49 |
-
if img_array.shape[2] == 4:
|
| 50 |
-
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
| 51 |
-
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
| 52 |
-
_, buffer = cv2.imencode('.jpg', img_array, encode_param)
|
| 53 |
-
compressed_img = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
|
| 54 |
-
ela_img = cv2.absdiff(img_array, compressed_img)
|
| 55 |
-
ela_img = cv2.convertScaleAbs(ela_img, alpha=10)
|
| 56 |
-
return Image.fromarray(cv2.cvtColor(ela_img, cv2.COLOR_BGR2RGB))
|
| 57 |
-
|
| 58 |
-
def gradient_processing(image_array):
|
| 59 |
-
gray_img = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY)
|
| 60 |
-
dx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3)
|
| 61 |
-
dy = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3)
|
| 62 |
-
gradient_magnitude = cv2.magnitude(dx, dy)
|
| 63 |
-
gradient_img = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 64 |
-
return Image.fromarray(gradient_img)
|
| 65 |
-
|
| 66 |
-
@app.post("/detect")
|
| 67 |
-
async def detect(image: UploadFile = File(...)):
|
| 68 |
-
try:
|
| 69 |
-
import time
|
| 70 |
-
start_time = time.time()
|
| 71 |
-
|
| 72 |
-
image_bytes = await image.read()
|
| 73 |
-
input_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 74 |
-
|
| 75 |
-
img_np = np.array(input_image)
|
| 76 |
-
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 77 |
-
|
| 78 |
-
individual_results = []
|
| 79 |
-
weighted_ai_score = 0
|
| 80 |
-
total_weight = 0
|
| 81 |
-
|
| 82 |
-
aiModels = []
|
| 83 |
-
colors = ["bg-red-500", "bg-orange-500", "bg-yellow-500", "bg-green-500", "bg-blue-500", "bg-purple-500", "bg-pink-500"]
|
| 84 |
-
|
| 85 |
-
for i, (name, model_pipeline) in enumerate(models.items()):
|
| 86 |
-
model_weight = MODELS_CONFIG[name]["weight"]
|
| 87 |
-
predictions = model_pipeline(input_image)
|
| 88 |
-
confidence = {p['label'].lower(): p['score'] for p in predictions}
|
| 89 |
-
|
| 90 |
-
artificial_score = (
|
| 91 |
-
confidence.get('artificial', 0) or confidence.get('ai image', 0) or
|
| 92 |
-
confidence.get('ai', 0) or confidence.get('deepfake', 0) or
|
| 93 |
-
confidence.get('ai_gen', 0) or confidence.get('fake', 0)
|
| 94 |
-
)
|
| 95 |
-
real_score = (
|
| 96 |
-
confidence.get('real', 0) or confidence.get('real image', 0) or
|
| 97 |
-
confidence.get('human', 0) or confidence.get('realism', 0)
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
if artificial_score > 0 and real_score == 0:
|
| 101 |
-
real_score = 1.0 - artificial_score
|
| 102 |
-
elif real_score > 0 and artificial_score == 0:
|
| 103 |
-
artificial_score = 1.0 - real_score
|
| 104 |
-
|
| 105 |
-
weighted_ai_score += artificial_score * model_weight
|
| 106 |
-
total_weight += model_weight
|
| 107 |
-
|
| 108 |
-
aiModels.append({
|
| 109 |
-
"name": name,
|
| 110 |
-
"percentage": round(artificial_score * 100, 2),
|
| 111 |
-
"color": colors[i % len(colors)]
|
| 112 |
-
})
|
| 113 |
-
|
| 114 |
-
final_score = (weighted_ai_score / total_weight) * 100 if total_weight > 0 else 0
|
| 115 |
-
verdict = final_score > 50
|
| 116 |
-
processing_time = int((time.time() - start_time) * 1000)
|
| 117 |
-
|
| 118 |
-
# Forensics
|
| 119 |
-
ela_img = gen_ela(img_bgr)
|
| 120 |
-
gradient_img = gradient_processing(img_bgr)
|
| 121 |
-
|
| 122 |
-
return JSONResponse({
|
| 123 |
-
"filename": image.filename,
|
| 124 |
-
"isDeepfake": verdict,
|
| 125 |
-
"confidence": round(final_score, 2),
|
| 126 |
-
"aiModels": aiModels,
|
| 127 |
-
"processingTime": processing_time,
|
| 128 |
-
"forensics": {
|
| 129 |
-
"original": pil_to_base64(input_image),
|
| 130 |
-
"ela": pil_to_base64(ela_img),
|
| 131 |
-
"gradient": pil_to_base64(gradient_img)
|
| 132 |
-
},
|
| 133 |
-
"verdictMessage": f"Consensus: {'Likely AI-Generated' if verdict else 'Likely Human-Made (Real)'}"
|
| 134 |
-
})
|
| 135 |
-
except Exception as e:
|
| 136 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# === FASTAPI BACKEND (main.py) ===
|
| 2 |
+
|
| 3 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 4 |
+
from fastapi.responses import JSONResponse
|
| 5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
+
import torch
|
| 10 |
+
import numpy as np
|
| 11 |
+
import cv2
|
| 12 |
+
import base64
|
| 13 |
+
|
| 14 |
+
app = FastAPI()
|
| 15 |
+
|
| 16 |
+
app.add_middleware(
|
| 17 |
+
CORSMiddleware,
|
| 18 |
+
allow_origins=["*"],
|
| 19 |
+
allow_credentials=True,
|
| 20 |
+
allow_methods=["*"],
|
| 21 |
+
allow_headers=["*"],
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 25 |
+
|
| 26 |
+
MODELS_CONFIG = {
|
| 27 |
+
"SwinV2 Based": {"path": "haywoodsloan/ai-image-detector-deploy", "weight": 0.15},
|
| 28 |
+
"ViT Based": {"path": "Heem2/AI-vs-Real-Image-Detection", "weight": 0.15},
|
| 29 |
+
"SDXL Dataset": {"path": "Organika/sdxl-detector", "weight": 0.15},
|
| 30 |
+
"SDXL + FLUX": {"path": "cmckinle/sdxl-flux-detector_v1.1", "weight": 0.15},
|
| 31 |
+
"DeepFake v2": {"path": "prithivMLmods/Deep-Fake-Detector-v2-Model", "weight": 0.15},
|
| 32 |
+
"Midjourney/SDXL": {"path": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", "weight": 0.10},
|
| 33 |
+
"ViT v4": {"path": "date3k2/vit-real-fake-classification-v4", "weight": 0.15},
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
models = {}
|
| 37 |
+
for name, config in MODELS_CONFIG.items():
|
| 38 |
+
try:
|
| 39 |
+
models[name] = pipeline("image-classification", model=config["path"], device=device)
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"Failed to load model {name}: {e}")
|
| 42 |
+
|
| 43 |
+
def pil_to_base64(image):
|
| 44 |
+
buffered = io.BytesIO()
|
| 45 |
+
image.save(buffered, format="JPEG")
|
| 46 |
+
return "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 47 |
+
|
| 48 |
+
def gen_ela(img_array, quality=90):
|
| 49 |
+
if img_array.shape[2] == 4:
|
| 50 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
| 51 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
| 52 |
+
_, buffer = cv2.imencode('.jpg', img_array, encode_param)
|
| 53 |
+
compressed_img = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
|
| 54 |
+
ela_img = cv2.absdiff(img_array, compressed_img)
|
| 55 |
+
ela_img = cv2.convertScaleAbs(ela_img, alpha=10)
|
| 56 |
+
return Image.fromarray(cv2.cvtColor(ela_img, cv2.COLOR_BGR2RGB))
|
| 57 |
+
|
| 58 |
+
def gradient_processing(image_array):
|
| 59 |
+
gray_img = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY)
|
| 60 |
+
dx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3)
|
| 61 |
+
dy = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3)
|
| 62 |
+
gradient_magnitude = cv2.magnitude(dx, dy)
|
| 63 |
+
gradient_img = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 64 |
+
return Image.fromarray(gradient_img)
|
| 65 |
+
|
| 66 |
+
@app.post("/detect")
|
| 67 |
+
async def detect(image: UploadFile = File(...)):
|
| 68 |
+
try:
|
| 69 |
+
import time
|
| 70 |
+
start_time = time.time()
|
| 71 |
+
|
| 72 |
+
image_bytes = await image.read()
|
| 73 |
+
input_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 74 |
+
|
| 75 |
+
img_np = np.array(input_image)
|
| 76 |
+
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 77 |
+
|
| 78 |
+
individual_results = []
|
| 79 |
+
weighted_ai_score = 0
|
| 80 |
+
total_weight = 0
|
| 81 |
+
|
| 82 |
+
aiModels = []
|
| 83 |
+
colors = ["bg-red-500", "bg-orange-500", "bg-yellow-500", "bg-green-500", "bg-blue-500", "bg-purple-500", "bg-pink-500"]
|
| 84 |
+
|
| 85 |
+
for i, (name, model_pipeline) in enumerate(models.items()):
|
| 86 |
+
model_weight = MODELS_CONFIG[name]["weight"]
|
| 87 |
+
predictions = model_pipeline(input_image)
|
| 88 |
+
confidence = {p['label'].lower(): p['score'] for p in predictions}
|
| 89 |
+
|
| 90 |
+
artificial_score = (
|
| 91 |
+
confidence.get('artificial', 0) or confidence.get('ai image', 0) or
|
| 92 |
+
confidence.get('ai', 0) or confidence.get('deepfake', 0) or
|
| 93 |
+
confidence.get('ai_gen', 0) or confidence.get('fake', 0)
|
| 94 |
+
)
|
| 95 |
+
real_score = (
|
| 96 |
+
confidence.get('real', 0) or confidence.get('real image', 0) or
|
| 97 |
+
confidence.get('human', 0) or confidence.get('realism', 0)
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if artificial_score > 0 and real_score == 0:
|
| 101 |
+
real_score = 1.0 - artificial_score
|
| 102 |
+
elif real_score > 0 and artificial_score == 0:
|
| 103 |
+
artificial_score = 1.0 - real_score
|
| 104 |
+
|
| 105 |
+
weighted_ai_score += artificial_score * model_weight
|
| 106 |
+
total_weight += model_weight
|
| 107 |
+
|
| 108 |
+
aiModels.append({
|
| 109 |
+
"name": name,
|
| 110 |
+
"percentage": round(artificial_score * 100, 2),
|
| 111 |
+
"color": colors[i % len(colors)]
|
| 112 |
+
})
|
| 113 |
+
|
| 114 |
+
final_score = (weighted_ai_score / total_weight) * 100 if total_weight > 0 else 0
|
| 115 |
+
verdict = final_score > 50
|
| 116 |
+
processing_time = int((time.time() - start_time) * 1000)
|
| 117 |
+
|
| 118 |
+
# Forensics
|
| 119 |
+
ela_img = gen_ela(img_bgr)
|
| 120 |
+
gradient_img = gradient_processing(img_bgr)
|
| 121 |
+
|
| 122 |
+
return JSONResponse({
|
| 123 |
+
"filename": image.filename,
|
| 124 |
+
"isDeepfake": verdict,
|
| 125 |
+
"confidence": round(final_score, 2),
|
| 126 |
+
"aiModels": aiModels,
|
| 127 |
+
"processingTime": processing_time,
|
| 128 |
+
"forensics": {
|
| 129 |
+
"original": pil_to_base64(input_image),
|
| 130 |
+
"ela": pil_to_base64(ela_img),
|
| 131 |
+
"gradient": pil_to_base64(gradient_img)
|
| 132 |
+
},
|
| 133 |
+
"verdictMessage": f"Consensus: {'Likely AI-Generated' if verdict else 'Likely Human-Made (Real)'}"
|
| 134 |
+
})
|
| 135 |
+
except Exception as e:
|
| 136 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# === Add this new code to the bottom of your deepfake_api.py file ===
|
| 141 |
+
import os
|
| 142 |
+
import google.generativeai as genai
|
| 143 |
+
from pydantic import BaseModel, Field
|
| 144 |
+
from typing import List, Dict, Any
|
| 145 |
+
|
| 146 |
+
# Configure the Gemini API with the key from Hugging Face secrets
|
| 147 |
+
gemini_api_key = os.getenv("GOOGLE_API_KEY")
|
| 148 |
+
if gemini_api_key:
|
| 149 |
+
genai.configure(api_key=gemini_api_key)
|
| 150 |
+
|
| 151 |
+
# Define Pydantic models to validate the incoming data structure
|
| 152 |
+
class AIModelResult(BaseModel):
|
| 153 |
+
name: str
|
| 154 |
+
percentage: float
|
| 155 |
+
|
| 156 |
+
class ForensicResult(BaseModel):
|
| 157 |
+
original: str
|
| 158 |
+
ela: str
|
| 159 |
+
gradient: str
|
| 160 |
+
|
| 161 |
+
class DetectionResult(BaseModel):
|
| 162 |
+
filename: str
|
| 163 |
+
isDeepfake: bool
|
| 164 |
+
confidence: float
|
| 165 |
+
aiModels: List[AIModelResult]
|
| 166 |
+
processingTime: int
|
| 167 |
+
forensics: ForensicResult
|
| 168 |
+
verdictMessage: str
|
| 169 |
+
|
| 170 |
+
# New endpoint to generate the report
|
| 171 |
+
@app.post("/generate-report")
|
| 172 |
+
async def generate_report(result: DetectionResult):
|
| 173 |
+
if not gemini_api_key:
|
| 174 |
+
raise HTTPException(status_code=500, detail="Google API key is not configured.")
|
| 175 |
+
|
| 176 |
+
try:
|
| 177 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 178 |
+
|
| 179 |
+
# Create a detailed prompt for the AI
|
| 180 |
+
prompt = f"""
|
| 181 |
+
You are an AI image forensics analyst. Your task is to generate a professional report based on the JSON data from a deepfake detection scan.
|
| 182 |
+
|
| 183 |
+
The user has scanned the file: "{result.filename}".
|
| 184 |
+
|
| 185 |
+
Here is the JSON data from the scan:
|
| 186 |
+
{{
|
| 187 |
+
"isDeepfake": {result.isDeepfake},
|
| 188 |
+
"overall_confidence_score": {result.confidence}%,
|
| 189 |
+
"verdict": "{result.verdictMessage}",
|
| 190 |
+
"model_analysis": { {model.name: f"{model.percentage}%" for model in result.aiModels} }
|
| 191 |
+
}}
|
| 192 |
+
|
| 193 |
+
Please generate a report with the following structure using Markdown:
|
| 194 |
+
|
| 195 |
+
## Forensic Analysis Report: {result.filename}
|
| 196 |
+
|
| 197 |
+
### **Executive Summary**
|
| 198 |
+
Provide a brief, high-level summary of the findings. State the final verdict clearly and the overall confidence score.
|
| 199 |
+
|
| 200 |
+
### **Detailed Model Analysis**
|
| 201 |
+
Analyze the results from the individual AI models. Mention the models with the highest confidence scores (e.g., Midjourney/SDXL, SDXL Dataset) and explain what their findings imply.
|
| 202 |
+
|
| 203 |
+
### **Conclusion & Recommendation**
|
| 204 |
+
Provide a final conclusion based on the combined evidence. Recommend next steps, such as whether the image can be trusted or if further manual analysis is required.
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
# Generate the report
|
| 208 |
+
response = model.generate_content(prompt)
|
| 209 |
+
|
| 210 |
+
return {"report": response.text}
|
| 211 |
+
|
| 212 |
+
except Exception as e:
|
| 213 |
+
raise HTTPException(status_code=500, detail=f"Failed to generate report: {str(e)}")
|