import streamlit as st from app_models.rubert_MODEL import classify_text from app_models.bag_of_words_MODEL import predict from app_models.lstm_MODEL import predict_review class_prefix = 'This review is likely...' def run(): st.title("Movie Review Classification") st.write("This page will compare three models: Bag of Words/TF-IDF, LSTM, and BERT.") # Example placeholder for user input user_input = st.text_area("") # Placeholder buttons for model selection if st.button('Classify with BoW/TF-IDF'): st.write(f'{class_prefix}{predict(user_input)}') if st.button('Classify with LSTM'): st.write(f'{class_prefix}{predict_review(user_input)}') if st.button('Classify with ruBERT'): st.write(f'{class_prefix}{classify_text(user_input)}')