import gradio as gr import cv2 import numpy as np from PIL import Image import base64 from io import BytesIO from models.image_text_transformation import ImageTextTransformation def pil_image_to_base64(image): buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() return img_str def add_logo(): with open("examples/logo.png", "rb") as f: logo_base64 = base64.b64encode(f.read()).decode() return logo_base64 def process_image(image_src, processor): gen_text = processor.image_to_text(image_src) gen_image = processor.text_to_image(gen_text) gen_image_str = pil_image_to_base64(gen_image) # Combine the outputs into a single HTML output custom_output = f''' <h2>Image->Text->Image:</h2> <div style="display: flex; flex-wrap: wrap;"> <div style="flex: 1;"> <h3>Image2Text</h3> <p>{gen_text}</p> </div> <div style="flex: 1;"> <h3>Text2Image</h3> <img src="data:image/jpeg;base64,{gen_image_str}" width="100%" /> </div> </div> <h2>Using Source Image to do Retrieval on COCO:</h2> <div style="display: flex; flex-wrap: wrap;"> <div style="flex: 1;"> <h3>Retrieval Top-3 Text</h3> <p>{gen_text}</p> </div> <div style="flex: 1;"> <h3>Retrieval Top-3 Image</h3> <img src="data:image/jpeg;base64,{gen_image_str}" width="100%" /> </div> </div> <h2>Using Generated texts to do Retrieval on COCO:</h2> <div style="display: flex; flex-wrap: wrap;"> <div style="flex: 1;"> <h3>Retrieval Top-3 Text</h3> <p>{gen_text}</p> </div> <div style="flex: 1;"> <h3>Retrieval Top-3 Image</h3> <img src="data:image/jpeg;base64,{gen_image_str}" width="100%" /> </div> </div> ''' return custom_output processor = ImageTextTransformation() # Create Gradio input and output components image_input = gr.inputs.Image(type='filepath', label="Input Image") logo_base64 = add_logo() # Create the title with the logo title_with_logo = f'<img src="data:image/jpeg;base64,{logo_base64}" width="400" style="vertical-align: middle;"> Understanding Image with Text' # Create Gradio interface interface = gr.Interface( fn=lambda image: process_image(image, processor), # Pass the processor object using a lambda function inputs=image_input, outputs=gr.outputs.HTML(), title=title_with_logo, description=""" This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot. """ ) # Launch the interface interface.launch()