import os import json import numpy as np from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForQuestionAnswering import torch from sklearn.metrics import f1_score import re from collections import Counter import string from huggingface_hub import login import gradio as gr import pandas as pd from datetime import datetime import matplotlib.pyplot as plt # Normalization functions (same as extractor) def normalize_answer(s): def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score_qa(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) return (2 * precision * recall) / (precision + recall) def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) # Identical confidence calculation to extractor def calculate_confidence(model, tokenizer, question, context): inputs = tokenizer( question, context, return_tensors="pt", truncation=True, max_length=512, stride=128, padding=True ) if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} model = model.cuda() with torch.no_grad(): outputs = model(**inputs) start_probs = torch.softmax(outputs.start_logits, dim=1) end_probs = torch.softmax(outputs.end_logits, dim=1) answer_start = torch.argmax(outputs.start_logits) answer_end = torch.argmax(outputs.end_logits) + 1 start_prob = start_probs[0, answer_start].item() end_prob = end_probs[0, answer_end-1].item() confidence = np.sqrt(start_prob * end_prob) answer_tokens = inputs["input_ids"][0][answer_start:answer_end] answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip() return answer, float(confidence) def run_evaluation(num_samples=100): # Authenticate if token := os.getenv("HF_TOKEN"): login(token=token) # Load model same as extractor model_name = "AvocadoMuffin/roberta-cuad-qa-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) # Load CUAD dataset dataset = load_dataset("theatticusproject/cuad-qa", token=token) test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"])))) results = [] for example in test_data: context = example["context"] question = example["question"] gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else "" pred_answer, confidence = calculate_confidence(model, tokenizer, question, context) results.append({ "question": question, "prediction": pred_answer, "ground_truth": gt_answer, "confidence": confidence, "exact_match": exact_match_score(pred_answer, gt_answer), "f1": f1_score_qa(pred_answer, gt_answer) }) # Generate report df = pd.DataFrame(results) avg_metrics = { "exact_match": df["exact_match"].mean() * 100, "f1": df["f1"].mean() * 100, "confidence": df["confidence"].mean() * 100 } # Confidence calibration analysis high_conf_correct = df[(df["confidence"] > 0.8) & (df["exact_match"] == 1)].shape[0] high_conf_total = df[df["confidence"] > 0.8].shape[0] report = f""" CUAD Evaluation Report (n={len(df)}) ======================== Accuracy: - Exact Match: {avg_metrics['exact_match']:.2f}% - F1 Score: {avg_metrics['f1']:.2f}% Confidence Analysis: - Avg Confidence: {avg_metrics['confidence']:.2f}% - High-Confidence (>80%) Accuracy: {high_conf_correct}/{high_conf_total} ({high_conf_correct/max(1,high_conf_total)*100:.1f}%) Confidence vs Accuracy: {df[['confidence', 'exact_match']].corr().iloc[0,1]:.3f} correlation """ # Save results timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") results_file = f"cuad_eval_{timestamp}.json" with open(results_file, "w") as f: json.dump({ "metrics": avg_metrics, "samples": results, "config": { "model": model_name, "confidence_method": "geometric_mean_start_end_probs" } }, f, indent=2) return report, df, results_file if __name__ == "__main__": report, df, _ = run_evaluation() print(report) print("\nSample predictions:") print(df.head())