AvocadoMuffin commited on
Commit
37e8cfe
·
verified ·
1 Parent(s): 379daf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -268
app.py CHANGED
@@ -2,7 +2,7 @@ import os
2
  import json
3
  import numpy as np
4
  from datasets import load_dataset
5
- from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
6
  import torch
7
  from sklearn.metrics import f1_score
8
  import re
@@ -12,311 +12,143 @@ from huggingface_hub import login
12
  import gradio as gr
13
  import pandas as pd
14
  from datetime import datetime
 
15
 
 
16
  def normalize_answer(s):
17
- """Normalize answer for evaluation"""
18
  def remove_articles(text):
19
  return re.sub(r'\b(a|an|the)\b', ' ', text)
20
-
21
  def white_space_fix(text):
22
  return ' '.join(text.split())
23
-
24
  def remove_punc(text):
25
  exclude = set(string.punctuation)
26
  return ''.join(ch for ch in text if ch not in exclude)
27
-
28
  def lower(text):
29
  return text.lower()
30
-
31
  return white_space_fix(remove_articles(remove_punc(lower(s))))
32
 
33
  def f1_score_qa(prediction, ground_truth):
34
- """Calculate F1 score for QA"""
35
  prediction_tokens = normalize_answer(prediction).split()
36
  ground_truth_tokens = normalize_answer(ground_truth).split()
37
-
38
- if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
39
- return int(prediction_tokens == ground_truth_tokens)
40
-
41
  common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
42
  num_same = sum(common.values())
43
-
44
  if num_same == 0:
45
  return 0
46
-
47
  precision = 1.0 * num_same / len(prediction_tokens)
48
  recall = 1.0 * num_same / len(ground_truth_tokens)
49
- f1 = (2 * precision * recall) / (precision + recall)
50
- return f1
51
 
52
  def exact_match_score(prediction, ground_truth):
53
- """Calculate exact match score"""
54
  return normalize_answer(prediction) == normalize_answer(ground_truth)
55
 
56
- def evaluate_model():
57
- # Authenticate with Hugging Face using the token
58
- hf_token = os.getenv("EVAL_TOKEN")
59
- if hf_token:
60
- try:
61
- login(token=hf_token)
62
- print("✓ Authenticated with Hugging Face")
63
- except Exception as e:
64
- print(f"⚠ Warning: Could not authenticate with HF token: {e}")
65
- else:
66
- print("⚠ Warning: EVAL_TOKEN not found in environment variables")
67
-
68
- print("Loading model and tokenizer...")
69
- model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
70
 
71
- try:
72
- tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
73
- model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
74
- qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
75
- print("✓ Model loaded successfully")
76
- return qa_pipeline, hf_token
77
- except Exception as e:
78
- print(f"✗ Error loading model: {e}")
79
- return None, None
80
 
81
- def run_evaluation(num_samples, progress=gr.Progress()):
82
- """Run evaluation and return results for Gradio interface"""
83
-
84
- # Load model
85
- qa_pipeline, hf_token = evaluate_model()
86
- if qa_pipeline is None:
87
- return "❌ Failed to load model", pd.DataFrame(), None
88
-
89
- progress(0.1, desc="Loading CUAD dataset...")
90
-
91
- # Load dataset - use QA format version (JSON, no PDFs)
92
- try:
93
- # Try the QA-specific version first (much faster, JSON format)
94
- dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True, token=hf_token)
95
- test_data = dataset["test"]
96
- print(f"✓ Loaded CUAD-QA dataset with {len(test_data)} samples")
97
- except Exception as e:
98
- try:
99
- # Fallback to original but limit to avoid PDF downloads
100
- dataset = load_dataset("cuad", split="test[:1000]", trust_remote_code=True, token=hf_token)
101
- test_data = dataset
102
- print(f"✓ Loaded CUAD dataset with {len(test_data)} samples")
103
- except Exception as e2:
104
- return f"❌ Error loading dataset: {e2}", pd.DataFrame(), None
105
 
106
- # Limit samples
107
- num_samples = min(num_samples, len(test_data))
108
- test_subset = test_data.select(range(num_samples))
109
 
110
- progress(0.2, desc=f"Starting evaluation on {num_samples} samples...")
 
111
 
112
- # Initialize metrics
113
- exact_matches = []
114
- f1_scores = []
115
- predictions = []
 
 
116
 
117
- # Run evaluation
118
- for i, example in enumerate(test_subset):
119
- progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
 
 
 
 
 
 
 
 
 
 
 
120
 
121
- try:
122
- context = example["context"]
123
- question = example["question"]
124
- answers = example["answers"]
125
-
126
- # Get model prediction
127
- result = qa_pipeline(question=question, context=context)
128
- predicted_answer = result["answer"]
129
-
130
- # Get ground truth answers
131
- if answers["text"] and len(answers["text"]) > 0:
132
- ground_truth = answers["text"][0] if isinstance(answers["text"], list) else answers["text"]
133
- else:
134
- ground_truth = ""
135
-
136
- # Calculate metrics
137
- em = exact_match_score(predicted_answer, ground_truth)
138
- f1 = f1_score_qa(predicted_answer, ground_truth)
139
-
140
- exact_matches.append(em)
141
- f1_scores.append(f1)
142
-
143
- predictions.append({
144
- "Sample_ID": i+1,
145
- "Question": question[:100] + "..." if len(question) > 100 else question,
146
- "Predicted_Answer": predicted_answer,
147
- "Ground_Truth": ground_truth,
148
- "Exact_Match": em,
149
- "F1_Score": round(f1, 3),
150
- "Confidence": round(result["score"], 3)
151
- })
152
-
153
- except Exception as e:
154
- print(f"Error processing sample {i}: {e}")
155
- continue
156
-
157
- progress(0.9, desc="Calculating final metrics...")
158
 
159
- # Calculate final metrics
160
- if len(exact_matches) == 0:
161
- return " No samples were successfully processed", pd.DataFrame(), None
162
 
163
- avg_exact_match = np.mean(exact_matches) * 100
164
- avg_f1_score = np.mean(f1_scores) * 100
 
 
 
 
165
 
166
- # Create results summary
167
- results_summary = f"""
168
- # 📊 CUAD Model Evaluation Results
169
- ## 🎯 Overall Performance
170
- - **Model**: AvocadoMuffin/roberta-cuad-qa-v3
171
- - **Dataset**: CUAD (Contract Understanding Atticus Dataset)
172
- - **Samples Evaluated**: {len(exact_matches)}
173
- - **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
174
- ## 📈 Metrics
175
- - **Exact Match Score**: {avg_exact_match:.2f}%
176
- - **F1 Score**: {avg_f1_score:.2f}%
177
- ## 🔍 Performance Analysis
178
- - **High Confidence Predictions**: {len([p for p in predictions if p['Confidence'] > 0.8])} ({len([p for p in predictions if p['Confidence'] > 0.8])/len(predictions)*100:.1f}%)
179
- - **Perfect Matches**: {len([p for p in predictions if p['Exact_Match'] == 1])} ({len([p for p in predictions if p['Exact_Match'] == 1])/len(predictions)*100:.1f}%)
180
- - **High F1 Scores (>0.8)**: {len([p for p in predictions if p['F1_Score'] > 0.8])} ({len([p for p in predictions if p['F1_Score'] > 0.8])/len(predictions)*100:.1f}%)
181
- """
182
 
183
- # Create detailed results DataFrame
184
- df = pd.DataFrame(predictions)
 
185
 
186
- # Save results to file
187
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
188
- results_file = f"cuad_evaluation_results_{timestamp}.json"
189
-
190
- detailed_results = {
191
- "model_name": "AvocadoMuffin/roberta-cuad-qa-v3",
192
- "dataset": "cuad",
193
- "num_samples": len(exact_matches),
194
- "exact_match_score": avg_exact_match,
195
- "f1_score": avg_f1_score,
196
- "evaluation_date": datetime.now().isoformat(),
197
- "predictions": predictions
198
- }
199
-
200
- try:
201
- with open(results_file, "w") as f:
202
- json.dump(detailed_results, f, indent=2)
203
- print(f"✓ Results saved to {results_file}")
204
- except Exception as e:
205
- print(f"⚠ Warning: Could not save results file: {e}")
206
- results_file = None
207
-
208
- progress(1.0, desc="✅ Evaluation completed!")
209
-
210
- return results_summary, df, results_file
211
 
212
- def create_gradio_interface():
213
- """Create Gradio interface for CUAD evaluation"""
214
-
215
- with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
216
- gr.HTML("""
217
- <div style="text-align: center; padding: 20px;">
218
- <h1>🏛️ CUAD Model Evaluation Dashboard</h1>
219
- <p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
220
- <p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v2</p>
221
- </div>
222
- """)
223
-
224
- with gr.Row():
225
- with gr.Column(scale=1):
226
- gr.HTML("<h3>⚙️ Evaluation Settings</h3>")
227
-
228
- num_samples = gr.Slider(
229
- minimum=10,
230
- maximum=500,
231
- value=100,
232
- step=10,
233
- label="Number of samples to evaluate",
234
- info="Choose between 10-500 samples (more samples = more accurate but slower)"
235
- )
236
-
237
- evaluate_btn = gr.Button(
238
- "🚀 Start Evaluation",
239
- variant="primary",
240
- size="lg"
241
- )
242
-
243
- gr.HTML("""
244
- <div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
245
- <h4>📋 What this evaluates:</h4>
246
- <ul>
247
- <li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
248
- <li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
249
- <li><strong>Confidence</strong>: Model's confidence in its predictions</li>
250
- </ul>
251
- </div>
252
- """)
253
-
254
- with gr.Column(scale=2):
255
- gr.HTML("<h3>📊 Results</h3>")
256
-
257
- results_summary = gr.Markdown(
258
- value="Click '🚀 Start Evaluation' to begin...",
259
- label="Evaluation Summary"
260
- )
261
-
262
- gr.HTML("<hr>")
263
-
264
- with gr.Row():
265
- gr.HTML("<h3>📋 Detailed Results</h3>")
266
-
267
- with gr.Row():
268
- detailed_results = gr.Dataframe(
269
- label="Sample-by-Sample Results",
270
- interactive=False,
271
- wrap=True
272
- )
273
-
274
- with gr.Row():
275
- download_file = gr.File(
276
- label="📥 Download Complete Results (JSON)",
277
- visible=False
278
- )
279
-
280
- # Event handlers
281
- def handle_evaluation(num_samples):
282
- summary, df, file_path = run_evaluation(num_samples)
283
- if file_path and os.path.exists(file_path):
284
- return summary, df, gr.update(visible=True, value=file_path)
285
- else:
286
- return summary, df, gr.update(visible=False)
287
-
288
- evaluate_btn.click(
289
- fn=handle_evaluation,
290
- inputs=[num_samples],
291
- outputs=[results_summary, detailed_results, download_file],
292
- show_progress=True
293
- )
294
-
295
- # Footer
296
- gr.HTML("""
297
- <div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
298
- <p>�� Powered by Hugging Face Transformers & Gradio</p>
299
- <p>📚 CUAD Dataset by The Atticus Project</p>
300
- </div>
301
- """)
302
-
303
- return demo
304
-
305
  if __name__ == "__main__":
306
- print("CUAD Model Evaluation with Gradio Interface")
307
- print("=" * 50)
308
-
309
- # Check if CUDA is available
310
- if torch.cuda.is_available():
311
- print(f"✓ CUDA available: {torch.cuda.get_device_name(0)}")
312
- else:
313
- print("! Running on CPU")
314
-
315
- # Create and launch Gradio interface
316
- demo = create_gradio_interface()
317
- demo.launch(
318
- server_name="0.0.0.0",
319
- server_port=7860,
320
- share=True,
321
- debug=True
322
- )
 
2
  import json
3
  import numpy as np
4
  from datasets import load_dataset
5
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
6
  import torch
7
  from sklearn.metrics import f1_score
8
  import re
 
12
  import gradio as gr
13
  import pandas as pd
14
  from datetime import datetime
15
+ import matplotlib.pyplot as plt
16
 
17
+ # Normalization functions (same as extractor)
18
  def normalize_answer(s):
 
19
  def remove_articles(text):
20
  return re.sub(r'\b(a|an|the)\b', ' ', text)
 
21
  def white_space_fix(text):
22
  return ' '.join(text.split())
 
23
  def remove_punc(text):
24
  exclude = set(string.punctuation)
25
  return ''.join(ch for ch in text if ch not in exclude)
 
26
  def lower(text):
27
  return text.lower()
 
28
  return white_space_fix(remove_articles(remove_punc(lower(s))))
29
 
30
  def f1_score_qa(prediction, ground_truth):
 
31
  prediction_tokens = normalize_answer(prediction).split()
32
  ground_truth_tokens = normalize_answer(ground_truth).split()
 
 
 
 
33
  common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
34
  num_same = sum(common.values())
 
35
  if num_same == 0:
36
  return 0
 
37
  precision = 1.0 * num_same / len(prediction_tokens)
38
  recall = 1.0 * num_same / len(ground_truth_tokens)
39
+ return (2 * precision * recall) / (precision + recall)
 
40
 
41
  def exact_match_score(prediction, ground_truth):
 
42
  return normalize_answer(prediction) == normalize_answer(ground_truth)
43
 
44
+ # Identical confidence calculation to extractor
45
+ def calculate_confidence(model, tokenizer, question, context):
46
+ inputs = tokenizer(
47
+ question,
48
+ context,
49
+ return_tensors="pt",
50
+ truncation=True,
51
+ max_length=512,
52
+ stride=128,
53
+ padding=True
54
+ )
 
 
 
55
 
56
+ if torch.cuda.is_available():
57
+ inputs = {k: v.cuda() for k, v in inputs.items()}
58
+ model = model.cuda()
 
 
 
 
 
 
59
 
60
+ with torch.no_grad():
61
+ outputs = model(**inputs)
62
+
63
+ start_probs = torch.softmax(outputs.start_logits, dim=1)
64
+ end_probs = torch.softmax(outputs.end_logits, dim=1)
65
+ answer_start = torch.argmax(outputs.start_logits)
66
+ answer_end = torch.argmax(outputs.end_logits) + 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ start_prob = start_probs[0, answer_start].item()
69
+ end_prob = end_probs[0, answer_end-1].item()
70
+ confidence = np.sqrt(start_prob * end_prob)
71
 
72
+ answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
73
+ answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip()
74
 
75
+ return answer, float(confidence)
76
+
77
+ def run_evaluation(num_samples=100):
78
+ # Authenticate
79
+ if token := os.getenv("HF_TOKEN"):
80
+ login(token=token)
81
 
82
+ # Load model same as extractor
83
+ model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
84
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
85
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
86
+
87
+ # Load CUAD dataset
88
+ dataset = load_dataset("theatticusproject/cuad-qa", token=token)
89
+ test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
90
+
91
+ results = []
92
+ for example in test_data:
93
+ context = example["context"]
94
+ question = example["question"]
95
+ gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
96
 
97
+ pred_answer, confidence = calculate_confidence(model, tokenizer, question, context)
98
+
99
+ results.append({
100
+ "question": question,
101
+ "prediction": pred_answer,
102
+ "ground_truth": gt_answer,
103
+ "confidence": confidence,
104
+ "exact_match": exact_match_score(pred_answer, gt_answer),
105
+ "f1": f1_score_qa(pred_answer, gt_answer)
106
+ })
107
+
108
+ # Generate report
109
+ df = pd.DataFrame(results)
110
+ avg_metrics = {
111
+ "exact_match": df["exact_match"].mean() * 100,
112
+ "f1": df["f1"].mean() * 100,
113
+ "confidence": df["confidence"].mean() * 100
114
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
+ # Confidence calibration analysis
117
+ high_conf_correct = df[(df["confidence"] > 0.8) & (df["exact_match"] == 1)].shape[0]
118
+ high_conf_total = df[df["confidence"] > 0.8].shape[0]
119
 
120
+ report = f"""
121
+ CUAD Evaluation Report (n={len(df)})
122
+ ========================
123
+ Accuracy:
124
+ - Exact Match: {avg_metrics['exact_match']:.2f}%
125
+ - F1 Score: {avg_metrics['f1']:.2f}%
126
 
127
+ Confidence Analysis:
128
+ - Avg Confidence: {avg_metrics['confidence']:.2f}%
129
+ - High-Confidence (>80%) Accuracy: {high_conf_correct}/{high_conf_total} ({high_conf_correct/max(1,high_conf_total)*100:.1f}%)
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
+ Confidence vs Accuracy:
132
+ {df[['confidence', 'exact_match']].corr().iloc[0,1]:.3f} correlation
133
+ """
134
 
135
+ # Save results
136
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
137
+ results_file = f"cuad_eval_{timestamp}.json"
138
+ with open(results_file, "w") as f:
139
+ json.dump({
140
+ "metrics": avg_metrics,
141
+ "samples": results,
142
+ "config": {
143
+ "model": model_name,
144
+ "confidence_method": "geometric_mean_start_end_probs"
145
+ }
146
+ }, f, indent=2)
147
+
148
+ return report, df, results_file
 
 
 
 
 
 
 
 
 
 
 
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  if __name__ == "__main__":
151
+ report, df, _ = run_evaluation()
152
+ print(report)
153
+ print("\nSample predictions:")
154
+ print(df.head())