Spaces:
Running
Running
File size: 17,418 Bytes
0f03dd5 f6c6d61 0f03dd5 4c1232a 0f03dd5 a1ce4b0 0f03dd5 f6c6d61 c0eef1e 0f03dd5 c0eef1e 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 c0eef1e 5ad87e4 f6c6d61 c0eef1e f6c6d61 c0eef1e f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 c0eef1e f6c6d61 0f03dd5 f6c6d61 0f03dd5 a1ce4b0 0f03dd5 f6c6d61 0f03dd5 f6c6d61 a1ce4b0 f6c6d61 0f03dd5 f6c6d61 8663fbd c0eef1e f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 a1ce4b0 0f03dd5 f6c6d61 8663fbd c0eef1e f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 a1ce4b0 f6c6d61 a1ce4b0 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 a1ce4b0 0f03dd5 a1ce4b0 0f03dd5 f6c6d61 0f03dd5 f6c6d61 0f03dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import os
import json
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
import torch
from sklearn.metrics import f1_score
import re
from collections import Counter
import string
from huggingface_hub import login
import gradio as gr
import pandas as pd
from datetime import datetime
def normalize_answer(s):
"""Normalize answer for evaluation"""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score_qa(prediction, ground_truth):
"""Calculate F1 score for QA"""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
return int(prediction_tokens == ground_truth_tokens)
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
"""Calculate exact match score"""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def has_answer(answers):
"""Check if the question has any valid answers"""
if not answers or not answers.get("text"):
return False
answer_texts = answers["text"] if isinstance(answers["text"], list) else [answers["text"]]
return any(text.strip() for text in answer_texts)
def get_top_k_predictions(qa_pipeline, question, context, k=3):
"""Get top-k predictions from the model"""
# Get raw model outputs
inputs = qa_pipeline.tokenizer(question, context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = qa_pipeline.model(**inputs)
start_logits = outputs.start_logits
end_logits = outputs.end_logits
# Get top-k start and end positions
start_scores, start_indices = torch.topk(start_logits.flatten(), k)
end_scores, end_indices = torch.topk(end_logits.flatten(), k)
predictions = []
# Generate all combinations of start and end positions
for start_idx in start_indices:
for end_idx in end_indices:
if start_idx <= end_idx: # Valid span
# Convert to answer text
input_ids = inputs["input_ids"][0]
answer_tokens = input_ids[start_idx:end_idx + 1]
answer_text = qa_pipeline.tokenizer.decode(answer_tokens, skip_special_tokens=True)
# Calculate combined score
start_score = start_logits[0][start_idx].item()
end_score = end_logits[0][end_idx].item()
combined_score = start_score + end_score
predictions.append({
"answer": answer_text,
"score": combined_score,
"start": start_idx.item(),
"end": end_idx.item()
})
# Sort by score and return top-k unique answers
predictions.sort(key=lambda x: x["score"], reverse=True)
unique_answers = []
seen_answers = set()
for pred in predictions:
normalized_answer = normalize_answer(pred["answer"])
if normalized_answer not in seen_answers and len(unique_answers) < k:
unique_answers.append(pred)
seen_answers.add(normalized_answer)
return unique_answers
def calculate_top_k_has_ans_f1(predictions, ground_truths, k=1):
"""Calculate Top-K Has Answer F1 score"""
f1_scores = []
for preds, gt in zip(predictions, ground_truths):
if not has_answer(gt):
continue # Skip questions without answers
# Get ground truth text
gt_text = gt["text"][0] if isinstance(gt["text"], list) else gt["text"]
# Calculate F1 for top-k predictions
max_f1 = 0
for i in range(min(k, len(preds))):
pred_text = preds[i]["answer"]
f1 = f1_score_qa(pred_text, gt_text)
max_f1 = max(max_f1, f1)
f1_scores.append(max_f1)
return np.mean(f1_scores) if f1_scores else 0
def evaluate_model():
# Authenticate with Hugging Face using the token
hf_token = os.getenv("EVAL_TOKEN")
if hf_token:
try:
login(token=hf_token)
print("β Authenticated with Hugging Face")
except Exception as e:
print(f"β Warning: Could not authenticate with HF token: {e}")
else:
print("β Warning: EVAL_TOKEN not found in environment variables")
print("Loading model and tokenizer...")
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
print("β Model loaded successfully")
return qa_pipeline, hf_token
except Exception as e:
print(f"β Error loading model: {e}")
return None, None
def run_evaluation(num_samples, progress=gr.Progress()):
"""Run evaluation and return results for Gradio interface"""
# Load model
qa_pipeline, hf_token = evaluate_model()
if qa_pipeline is None:
return "β Failed to load model", pd.DataFrame(), None
progress(0.1, desc="Loading CUAD dataset...")
# Load dataset
try:
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True, token=hf_token)
test_data = dataset["test"]
print(f"β Loaded CUAD-QA dataset with {len(test_data)} samples")
except Exception as e:
try:
dataset = load_dataset("cuad", split="test[:1000]", trust_remote_code=True, token=hf_token)
test_data = dataset
print(f"β Loaded CUAD dataset with {len(test_data)} samples")
except Exception as e2:
return f"β Error loading dataset: {e2}", pd.DataFrame(), None
# Limit samples
num_samples = min(num_samples, len(test_data))
test_subset = test_data.select(range(num_samples))
progress(0.2, desc=f"Starting evaluation on {num_samples} samples...")
# Initialize storage for predictions and ground truths
all_top_k_predictions = []
all_ground_truths = []
all_has_answer_flags = []
# Storage for detailed results
detailed_results = []
# Run evaluation
for i, example in enumerate(test_subset):
progress((0.2 + 0.6 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
try:
context = example["context"]
question = example["question"]
answers = example["answers"]
# Check if question has answers
has_ans = has_answer(answers)
all_has_answer_flags.append(has_ans)
all_ground_truths.append(answers)
# Get top-3 predictions
top_k_preds = get_top_k_predictions(qa_pipeline, question, context, k=3)
all_top_k_predictions.append(top_k_preds)
# Get ground truth for display
if has_ans:
ground_truth = answers["text"][0] if isinstance(answers["text"], list) else answers["text"]
else:
ground_truth = "[No Answer]"
# Calculate metrics for this sample
if has_ans and top_k_preds:
top1_f1 = f1_score_qa(top_k_preds[0]["answer"], ground_truth)
top3_f1 = max([f1_score_qa(pred["answer"], ground_truth) for pred in top_k_preds[:3]])
em = exact_match_score(top_k_preds[0]["answer"], ground_truth)
else:
top1_f1 = 0
top3_f1 = 0
em = 0
detailed_results.append({
"Sample_ID": i+1,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Has_Answer": has_ans,
"Top1_Prediction": top_k_preds[0]["answer"] if top_k_preds else "[No Prediction]",
"Top3_Predictions": " | ".join([p["answer"] for p in top_k_preds[:3]]),
"Ground_Truth": ground_truth,
"Top1_F1": round(top1_f1, 3),
"Top3_F1": round(top3_f1, 3),
"Exact_Match": em,
"Top1_Confidence": round(top_k_preds[0]["score"], 3) if top_k_preds else 0
})
except Exception as e:
print(f"Error processing sample {i}: {e}")
continue
progress(0.8, desc="Calculating final metrics...")
# Filter for questions with answers only
has_ans_predictions = [pred for pred, has_ans in zip(all_top_k_predictions, all_has_answer_flags) if has_ans]
has_ans_ground_truths = [gt for gt, has_ans in zip(all_ground_truths, all_has_answer_flags) if has_ans]
if len(has_ans_predictions) == 0:
return "β No samples with answers were found", pd.DataFrame(), None
# Calculate Top-K Has Answer F1 scores
top1_has_ans_f1 = calculate_top_k_has_ans_f1(has_ans_predictions, has_ans_ground_truths, k=1) * 100
top3_has_ans_f1 = calculate_top_k_has_ans_f1(has_ans_predictions, has_ans_ground_truths, k=3) * 100
# Calculate overall metrics
total_samples = len(detailed_results)
has_answer_samples = len(has_ans_predictions)
avg_exact_match = np.mean([r["Exact_Match"] for r in detailed_results]) * 100
avg_top1_f1 = np.mean([r["Top1_F1"] for r in detailed_results if r["Has_Answer"]]) * 100
avg_top3_f1 = np.mean([r["Top3_F1"] for r in detailed_results if r["Has_Answer"]]) * 100
# Create results summary
results_summary = f"""
# π CUAD Model Evaluation Results
## π― Model Performance
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
- **Total Samples**: {total_samples}
- **Samples with Answers**: {has_answer_samples}
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
## π Key Metrics (Industry Standard)
- **Top 1 Has Ans F1**: {top1_has_ans_f1:.2f}%
- **Top 3 Has Ans F1**: {top3_has_ans_f1:.2f}%
## π Additional Metrics
- **Exact Match Score**: {avg_exact_match:.2f}%
- **Average Top-1 F1**: {avg_top1_f1:.2f}%
- **Average Top-3 F1**: {avg_top3_f1:.2f}%
## π Performance Breakdown
- **High Confidence Predictions (>0.8)**: {len([r for r in detailed_results if r['Top1_Confidence'] > 0.8])} ({len([r for r in detailed_results if r['Top1_Confidence'] > 0.8])/total_samples*100:.1f}%)
- **Perfect Matches**: {len([r for r in detailed_results if r['Exact_Match'] == 1])} ({len([r for r in detailed_results if r['Exact_Match'] == 1])/total_samples*100:.1f}%)
- **High F1 Scores (>0.8)**: {len([r for r in detailed_results if r['Top1_F1'] > 0.8])} ({len([r for r in detailed_results if r['Top1_F1'] > 0.8])/has_answer_samples*100:.1f}%)
## π Comparison with Benchmarks
Your model's **Top 1 Has Ans F1** of {top1_has_ans_f1:.2f}% can be compared to:
- gustavhartz/roberta-base-cuad-finetuned: 85.68%
- Rakib/roberta-base-on-cuad: 81.26%
"""
# Create detailed results DataFrame
df = pd.DataFrame(detailed_results)
# Save results to file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f"cuad_evaluation_results_{timestamp}.json"
complete_results = {
"model_name": "AvocadoMuffin/roberta-cuad-qa-v3",
"dataset": "cuad",
"total_samples": total_samples,
"has_answer_samples": has_answer_samples,
"top1_has_ans_f1": top1_has_ans_f1,
"top3_has_ans_f1": top3_has_ans_f1,
"exact_match_score": avg_exact_match,
"avg_top1_f1": avg_top1_f1,
"avg_top3_f1": avg_top3_f1,
"evaluation_date": datetime.now().isoformat(),
"detailed_results": detailed_results
}
try:
with open(results_file, "w") as f:
json.dump(complete_results, f, indent=2)
print(f"β Results saved to {results_file}")
except Exception as e:
print(f"β Warning: Could not save results file: {e}")
results_file = None
progress(1.0, desc="β
Evaluation completed!")
return results_summary, df, results_file
def create_gradio_interface():
"""Create Gradio interface for CUAD evaluation"""
with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v3</p>
<p><em>Now with industry-standard Top-K Has Answer F1 metrics!</em></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>βοΈ Evaluation Settings</h3>")
num_samples = gr.Slider(
minimum=10,
maximum=500,
value=100,
step=10,
label="Number of samples to evaluate",
info="Choose between 10-500 samples (more samples = more accurate but slower)"
)
evaluate_btn = gr.Button(
"π Start Evaluation",
variant="primary",
size="lg"
)
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
<h4>π Evaluation Metrics:</h4>
<ul>
<li><strong>Top 1 Has Ans F1</strong>: F1 score for single best answer (industry standard)</li>
<li><strong>Top 3 Has Ans F1</strong>: F1 score allowing up to 3 predictions</li>
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
<li><strong>Confidence</strong>: Model's confidence in predictions</li>
</ul>
<p><em>Note: "Has Ans" metrics only consider questions that have valid answers.</em></p>
</div>
""")
with gr.Column(scale=2):
gr.HTML("<h3>π Results</h3>")
results_summary = gr.Markdown(
value="Click 'π Start Evaluation' to begin...",
label="Evaluation Summary"
)
gr.HTML("<hr>")
with gr.Row():
gr.HTML("<h3>π Detailed Results</h3>")
with gr.Row():
detailed_results = gr.Dataframe(
label="Sample-by-Sample Results",
interactive=False,
wrap=True
)
with gr.Row():
download_file = gr.File(
label="π₯ Download Complete Results (JSON)",
visible=False
)
# Event handlers
def handle_evaluation(num_samples):
summary, df, file_path = run_evaluation(num_samples)
if file_path and os.path.exists(file_path):
return summary, df, gr.update(visible=True, value=file_path)
else:
return summary, df, gr.update(visible=False)
evaluate_btn.click(
fn=handle_evaluation,
inputs=[num_samples],
outputs=[results_summary, detailed_results, download_file],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
<p>π€ Powered by Hugging Face Transformers & Gradio</p>
<p>π CUAD Dataset by The Atticus Project</p>
<p>π Now with industry-standard Top-K Has Answer F1 metrics</p>
</div>
""")
return demo
if __name__ == "__main__":
print("CUAD Model Evaluation with Top-K Has Answer F1 Metrics")
print("=" * 60)
# Check if CUDA is available
if torch.cuda.is_available():
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
else:
print("! Running on CPU")
# Create and launch Gradio interface
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
) |