Spaces:
Running
Running
File size: 15,603 Bytes
0f03dd5 5ad87e4 0f03dd5 02af374 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 a1ce4b0 0f03dd5 5ad87e4 0f03dd5 8663fbd 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 8663fbd 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 a1ce4b0 0f03dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import json
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
import torch
from sklearn.metrics import f1_score
import re
from collections import Counter
import string
from huggingface_hub import login
import gradio as gr
import pandas as pd
from datetime import datetime
def normalize_answer(s):
"""Normalize answer for evaluation"""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score_qa(prediction, ground_truth):
"""Calculate F1 score for QA"""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
return int(prediction_tokens == ground_truth_tokens)
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
"""Calculate exact match score"""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Calculate maximum score over all ground truth answers"""
scores = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores.append(score)
return max(scores) if scores else 0
def evaluate_model():
# Authenticate with Hugging Face using the token
hf_token = os.getenv("EVAL_TOKEN")
if hf_token:
try:
login(token=hf_token)
print("β Authenticated with Hugging Face")
except Exception as e:
print(f"β Warning: Could not authenticate with HF token: {e}")
else:
print("β Warning: EVAL_TOKEN not found in environment variables")
print("Loading model and tokenizer...")
model_name = "AvocadoMuffin/roberta-cuad-qa-v3"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
print("β Model loaded successfully")
return qa_pipeline, hf_token
except Exception as e:
print(f"β Error loading model: {e}")
return None, None
def inspect_dataset_structure(dataset, num_samples=3):
"""Inspect dataset structure for debugging"""
print(f"Dataset structure inspection:")
print(f"Dataset type: {type(dataset)}")
print(f"Dataset length: {len(dataset)}")
if len(dataset) > 0:
sample = dataset[0]
print(f"Sample keys: {list(sample.keys()) if isinstance(sample, dict) else 'Not a dict'}")
print(f"Sample structure:")
for key, value in sample.items():
print(f" {key}: {type(value)} - {str(value)[:100]}...")
return dataset
def run_evaluation(num_samples, progress=gr.Progress()):
"""Run evaluation and return results for Gradio interface"""
# Load model
qa_pipeline, hf_token = evaluate_model()
if qa_pipeline is None:
return "β Failed to load model", pd.DataFrame(), None
progress(0.1, desc="Loading CUAD dataset...")
# Load dataset - try multiple approaches
dataset = None
test_data = None
try:
# Try cuad dataset directly
print("Attempting to load CUAD dataset...")
dataset = load_dataset("cuad", token=hf_token)
test_data = dataset["test"]
print(f"β Loaded CUAD dataset with {len(test_data)} samples")
# Inspect structure
test_data = inspect_dataset_structure(test_data)
except Exception as e:
print(f"Error loading CUAD dataset: {e}")
try:
# Try squad format as fallback
print("Trying SQuAD format...")
dataset = load_dataset("squad", split="validation", token=hf_token)
test_data = dataset.select(range(min(1000, len(dataset))))
print(f"β Loaded SQuAD dataset as fallback with {len(test_data)} samples")
except Exception as e2:
return f"β Error loading any dataset: {e2}", pd.DataFrame(), None
if test_data is None:
return "β No test data available", pd.DataFrame(), None
# Limit samples
num_samples = min(num_samples, len(test_data))
test_subset = test_data.select(range(num_samples))
progress(0.2, desc=f"Starting evaluation on {num_samples} samples...")
# Initialize metrics
exact_matches = []
f1_scores = []
predictions = []
# Run evaluation
for i, example in enumerate(test_subset):
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
try:
# Handle different dataset formats
if "context" in example:
context = example["context"]
elif "text" in example:
context = example["text"]
else:
print(f"Warning: No context found in sample {i}")
continue
if "question" in example:
question = example["question"]
elif "title" in example:
question = example["title"]
else:
print(f"Warning: No question found in sample {i}")
continue
# Handle answers field
ground_truths = []
if "answers" in example:
answers = example["answers"]
if isinstance(answers, dict):
if "text" in answers:
if isinstance(answers["text"], list):
ground_truths = [ans for ans in answers["text"] if ans.strip()]
else:
ground_truths = [answers["text"]] if answers["text"].strip() else []
elif isinstance(answers, list):
ground_truths = answers
# Skip if no ground truth
if not ground_truths:
print(f"Warning: No ground truth found for sample {i}")
continue
# Get model prediction
try:
result = qa_pipeline(question=question, context=context)
predicted_answer = result["answer"]
confidence = result["score"]
except Exception as e:
print(f"Error getting prediction for sample {i}: {e}")
continue
# Calculate metrics using max over ground truths
em = max_over_ground_truths(exact_match_score, predicted_answer, ground_truths)
f1 = max_over_ground_truths(f1_score_qa, predicted_answer, ground_truths)
exact_matches.append(em)
f1_scores.append(f1)
predictions.append({
"Sample_ID": i+1,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Predicted_Answer": predicted_answer[:100] + "..." if len(predicted_answer) > 100 else predicted_answer,
"Ground_Truth": ground_truths[0][:100] + "..." if len(ground_truths[0]) > 100 else ground_truths[0],
"Num_Ground_Truths": len(ground_truths),
"Exact_Match": em,
"F1_Score": round(f1, 3),
"Confidence": round(confidence, 3)
})
except Exception as e:
print(f"Error processing sample {i}: {e}")
continue
progress(0.9, desc="Calculating final metrics...")
# Calculate final metrics
if len(exact_matches) == 0:
return "β No samples were successfully processed", pd.DataFrame(), None
avg_exact_match = np.mean(exact_matches) * 100
avg_f1_score = np.mean(f1_scores) * 100
# Calculate additional statistics
high_confidence_samples = [p for p in predictions if p['Confidence'] > 0.8]
perfect_matches = [p for p in predictions if p['Exact_Match'] == 1]
high_f1_samples = [p for p in predictions if p['F1_Score'] > 0.8]
# Create results summary
results_summary = f"""
# π CUAD Model Evaluation Results
## π― Overall Performance
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
- **Samples Evaluated**: {len(exact_matches)}
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
## π Core Metrics
- **Exact Match Score**: {avg_exact_match:.2f}%
- **F1 Score**: {avg_f1_score:.2f}%
## π Performance Analysis
- **High Confidence Predictions (>0.8)**: {len(high_confidence_samples)} ({len(high_confidence_samples)/len(predictions)*100:.1f}%)
- **Perfect Matches**: {len(perfect_matches)} ({len(perfect_matches)/len(predictions)*100:.1f}%)
- **High F1 Scores (>0.8)**: {len(high_f1_samples)} ({len(high_f1_samples)/len(predictions)*100:.1f}%)
## π Distribution
- **Average Confidence**: {np.mean([p['Confidence'] for p in predictions]):.3f}
- **Median F1 Score**: {np.median([p['F1_Score'] for p in predictions]):.3f}
- **Samples with Multiple Ground Truths**: {len([p for p in predictions if p['Num_Ground_Truths'] > 1])}
## π― Evaluation Quality
The evaluation accounts for multiple ground truth answers where available, using the maximum score across all valid answers for each question.
"""
# Create detailed results DataFrame
df = pd.DataFrame(predictions)
# Save results to file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f"cuad_evaluation_results_{timestamp}.json"
detailed_results = {
"model_name": "AvocadoMuffin/roberta-cuad-qa-v3",
"dataset": "cuad",
"num_samples": len(exact_matches),
"exact_match_score": avg_exact_match,
"f1_score": avg_f1_score,
"evaluation_date": datetime.now().isoformat(),
"evaluation_methodology": "max_over_ground_truths",
"predictions": predictions,
"summary_stats": {
"avg_confidence": float(np.mean([p['Confidence'] for p in predictions])),
"median_f1": float(np.median([p['F1_Score'] for p in predictions])),
"samples_with_multiple_ground_truths": len([p for p in predictions if p['Num_Ground_Truths'] > 1])
}
}
try:
with open(results_file, "w") as f:
json.dump(detailed_results, f, indent=2)
print(f"β Results saved to {results_file}")
except Exception as e:
print(f"β Warning: Could not save results file: {e}")
results_file = None
progress(1.0, desc="β
Evaluation completed!")
return results_summary, df, results_file
def create_gradio_interface():
"""Create Gradio interface for CUAD evaluation"""
with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v3</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>βοΈ Evaluation Settings</h3>")
num_samples = gr.Slider(
minimum=10,
maximum=500,
value=100,
step=10,
label="Number of samples to evaluate",
info="Choose between 10-500 samples (more samples = more accurate but slower)"
)
evaluate_btn = gr.Button(
"π Start Evaluation",
variant="primary",
size="lg"
)
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
<h4>π What this evaluates:</h4>
<ul>
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
<li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
<li><strong>Confidence</strong>: Model's confidence in its predictions</li>
<li><strong>Max-over-GT</strong>: Best score across multiple ground truth answers</li>
</ul>
</div>
""")
with gr.Column(scale=2):
gr.HTML("<h3>π Results</h3>")
results_summary = gr.Markdown(
value="Click 'π Start Evaluation' to begin...",
label="Evaluation Summary"
)
gr.HTML("<hr>")
with gr.Row():
gr.HTML("<h3>π Detailed Results</h3>")
with gr.Row():
detailed_results = gr.Dataframe(
label="Sample-by-Sample Results",
interactive=False,
wrap=True
)
with gr.Row():
download_file = gr.File(
label="π₯ Download Complete Results (JSON)",
visible=False
)
# Event handlers
def handle_evaluation(num_samples):
summary, df, file_path = run_evaluation(num_samples)
if file_path and os.path.exists(file_path):
return summary, df, gr.update(visible=True, value=file_path)
else:
return summary, df, gr.update(visible=False)
evaluate_btn.click(
fn=handle_evaluation,
inputs=[num_samples],
outputs=[results_summary, detailed_results, download_file],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
<p>π€ Powered by Hugging Face Transformers & Gradio</p>
<p>π CUAD Dataset by The Atticus Project</p>
</div>
""")
return demo
if __name__ == "__main__":
print("CUAD Model Evaluation with Gradio Interface")
print("=" * 50)
# Check if CUDA is available
if torch.cuda.is_available():
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
else:
print("! Running on CPU")
# Create and launch Gradio interface
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
) |