File size: 15,603 Bytes
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad87e4
 
 
 
 
 
 
 
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
02af374
0f03dd5
 
 
 
 
 
 
 
 
 
 
5ad87e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f03dd5
 
 
 
 
 
a1ce4b0
0f03dd5
 
 
5ad87e4
 
 
 
0f03dd5
5ad87e4
 
 
0f03dd5
5ad87e4
 
 
 
 
0f03dd5
5ad87e4
0f03dd5
5ad87e4
 
 
 
 
0f03dd5
5ad87e4
 
 
 
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad87e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f03dd5
5ad87e4
 
 
 
 
 
 
 
 
 
 
 
0f03dd5
5ad87e4
 
 
 
 
 
 
 
 
 
 
 
 
0f03dd5
5ad87e4
 
 
0f03dd5
 
 
 
 
 
 
5ad87e4
 
 
0f03dd5
 
5ad87e4
0f03dd5
 
 
a1ce4b0
0f03dd5
 
 
 
 
a1ce4b0
 
 
0f03dd5
 
 
5ad87e4
 
 
 
 
0f03dd5
 
 
 
8663fbd
0f03dd5
 
 
 
5ad87e4
0f03dd5
 
 
 
5ad87e4
 
 
 
 
 
 
 
 
 
 
0f03dd5
 
 
 
 
a1ce4b0
0f03dd5
 
 
 
8663fbd
0f03dd5
 
 
 
 
5ad87e4
 
 
 
 
 
 
0f03dd5
 
a1ce4b0
 
 
 
 
 
 
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
5ad87e4
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad87e4
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ce4b0
 
 
 
 
 
 
0f03dd5
a1ce4b0
0f03dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import json
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
import torch
from sklearn.metrics import f1_score
import re
from collections import Counter
import string
from huggingface_hub import login
import gradio as gr
import pandas as pd
from datetime import datetime

def normalize_answer(s):
    """Normalize answer for evaluation"""
    def remove_articles(text):
        return re.sub(r'\b(a|an|the)\b', ' ', text)
    
    def white_space_fix(text):
        return ' '.join(text.split())
    
    def remove_punc(text):
        exclude = set(string.punctuation)
        return ''.join(ch for ch in text if ch not in exclude)
    
    def lower(text):
        return text.lower()
    
    return white_space_fix(remove_articles(remove_punc(lower(s))))

def f1_score_qa(prediction, ground_truth):
    """Calculate F1 score for QA"""
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    
    if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
        return int(prediction_tokens == ground_truth_tokens)
    
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    
    if num_same == 0:
        return 0
    
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1

def exact_match_score(prediction, ground_truth):
    """Calculate exact match score"""
    return normalize_answer(prediction) == normalize_answer(ground_truth)

def max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Calculate maximum score over all ground truth answers"""
    scores = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores.append(score)
    return max(scores) if scores else 0

def evaluate_model():
    # Authenticate with Hugging Face using the token
    hf_token = os.getenv("EVAL_TOKEN")
    if hf_token:
        try:
            login(token=hf_token)
            print("βœ“ Authenticated with Hugging Face")
        except Exception as e:
            print(f"⚠ Warning: Could not authenticate with HF token: {e}")
    else:
        print("⚠ Warning: EVAL_TOKEN not found in environment variables")
    
    print("Loading model and tokenizer...")
    model_name = "AvocadoMuffin/roberta-cuad-qa-v3"
    
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
        model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
        qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
        print("βœ“ Model loaded successfully")
        return qa_pipeline, hf_token
    except Exception as e:
        print(f"βœ— Error loading model: {e}")
        return None, None

def inspect_dataset_structure(dataset, num_samples=3):
    """Inspect dataset structure for debugging"""
    print(f"Dataset structure inspection:")
    print(f"Dataset type: {type(dataset)}")
    print(f"Dataset length: {len(dataset)}")
    
    if len(dataset) > 0:
        sample = dataset[0]
        print(f"Sample keys: {list(sample.keys()) if isinstance(sample, dict) else 'Not a dict'}")
        print(f"Sample structure:")
        for key, value in sample.items():
            print(f"  {key}: {type(value)} - {str(value)[:100]}...")
    
    return dataset

def run_evaluation(num_samples, progress=gr.Progress()):
    """Run evaluation and return results for Gradio interface"""
    
    # Load model
    qa_pipeline, hf_token = evaluate_model()
    if qa_pipeline is None:
        return "❌ Failed to load model", pd.DataFrame(), None
    
    progress(0.1, desc="Loading CUAD dataset...")
    
    # Load dataset - try multiple approaches
    dataset = None
    test_data = None
    
    try:
        # Try cuad dataset directly
        print("Attempting to load CUAD dataset...")
        dataset = load_dataset("cuad", token=hf_token)
        test_data = dataset["test"]
        print(f"βœ“ Loaded CUAD dataset with {len(test_data)} samples")
        
        # Inspect structure
        test_data = inspect_dataset_structure(test_data)
        
    except Exception as e:
        print(f"Error loading CUAD dataset: {e}")
        try:
            # Try squad format as fallback
            print("Trying SQuAD format...")
            dataset = load_dataset("squad", split="validation", token=hf_token)
            test_data = dataset.select(range(min(1000, len(dataset))))
            print(f"βœ“ Loaded SQuAD dataset as fallback with {len(test_data)} samples")
        except Exception as e2:
            return f"❌ Error loading any dataset: {e2}", pd.DataFrame(), None
    
    if test_data is None:
        return "❌ No test data available", pd.DataFrame(), None
    
    # Limit samples
    num_samples = min(num_samples, len(test_data))
    test_subset = test_data.select(range(num_samples))
    
    progress(0.2, desc=f"Starting evaluation on {num_samples} samples...")
    
    # Initialize metrics
    exact_matches = []
    f1_scores = []
    predictions = []
    
    # Run evaluation
    for i, example in enumerate(test_subset):
        progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
        
        try:
            # Handle different dataset formats
            if "context" in example:
                context = example["context"]
            elif "text" in example:
                context = example["text"]
            else:
                print(f"Warning: No context found in sample {i}")
                continue
                
            if "question" in example:
                question = example["question"]
            elif "title" in example:
                question = example["title"]
            else:
                print(f"Warning: No question found in sample {i}")
                continue
            
            # Handle answers field
            ground_truths = []
            if "answers" in example:
                answers = example["answers"]
                if isinstance(answers, dict):
                    if "text" in answers:
                        if isinstance(answers["text"], list):
                            ground_truths = [ans for ans in answers["text"] if ans.strip()]
                        else:
                            ground_truths = [answers["text"]] if answers["text"].strip() else []
                elif isinstance(answers, list):
                    ground_truths = answers
            
            # Skip if no ground truth
            if not ground_truths:
                print(f"Warning: No ground truth found for sample {i}")
                continue
            
            # Get model prediction
            try:
                result = qa_pipeline(question=question, context=context)
                predicted_answer = result["answer"]
                confidence = result["score"]
            except Exception as e:
                print(f"Error getting prediction for sample {i}: {e}")
                continue
            
            # Calculate metrics using max over ground truths
            em = max_over_ground_truths(exact_match_score, predicted_answer, ground_truths)
            f1 = max_over_ground_truths(f1_score_qa, predicted_answer, ground_truths)
            
            exact_matches.append(em)
            f1_scores.append(f1)
            
            predictions.append({
                "Sample_ID": i+1,
                "Question": question[:100] + "..." if len(question) > 100 else question,
                "Predicted_Answer": predicted_answer[:100] + "..." if len(predicted_answer) > 100 else predicted_answer,
                "Ground_Truth": ground_truths[0][:100] + "..." if len(ground_truths[0]) > 100 else ground_truths[0],
                "Num_Ground_Truths": len(ground_truths),
                "Exact_Match": em,
                "F1_Score": round(f1, 3),
                "Confidence": round(confidence, 3)
            })
            
        except Exception as e:
            print(f"Error processing sample {i}: {e}")
            continue
    
    progress(0.9, desc="Calculating final metrics...")
    
    # Calculate final metrics
    if len(exact_matches) == 0:
        return "❌ No samples were successfully processed", pd.DataFrame(), None
    
    avg_exact_match = np.mean(exact_matches) * 100
    avg_f1_score = np.mean(f1_scores) * 100
    
    # Calculate additional statistics
    high_confidence_samples = [p for p in predictions if p['Confidence'] > 0.8]
    perfect_matches = [p for p in predictions if p['Exact_Match'] == 1]
    high_f1_samples = [p for p in predictions if p['F1_Score'] > 0.8]
    
    # Create results summary
    results_summary = f"""
# πŸ“Š CUAD Model Evaluation Results
## 🎯 Overall Performance
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
- **Samples Evaluated**: {len(exact_matches)}
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}

## πŸ“ˆ Core Metrics
- **Exact Match Score**: {avg_exact_match:.2f}%
- **F1 Score**: {avg_f1_score:.2f}%

## πŸ” Performance Analysis
- **High Confidence Predictions (>0.8)**: {len(high_confidence_samples)} ({len(high_confidence_samples)/len(predictions)*100:.1f}%)
- **Perfect Matches**: {len(perfect_matches)} ({len(perfect_matches)/len(predictions)*100:.1f}%)
- **High F1 Scores (>0.8)**: {len(high_f1_samples)} ({len(high_f1_samples)/len(predictions)*100:.1f}%)

## πŸ“Š Distribution
- **Average Confidence**: {np.mean([p['Confidence'] for p in predictions]):.3f}
- **Median F1 Score**: {np.median([p['F1_Score'] for p in predictions]):.3f}
- **Samples with Multiple Ground Truths**: {len([p for p in predictions if p['Num_Ground_Truths'] > 1])}

## 🎯 Evaluation Quality
The evaluation accounts for multiple ground truth answers where available, using the maximum score across all valid answers for each question.
"""
    
    # Create detailed results DataFrame
    df = pd.DataFrame(predictions)
    
    # Save results to file
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    results_file = f"cuad_evaluation_results_{timestamp}.json"
    
    detailed_results = {
        "model_name": "AvocadoMuffin/roberta-cuad-qa-v3",
        "dataset": "cuad",
        "num_samples": len(exact_matches),
        "exact_match_score": avg_exact_match,
        "f1_score": avg_f1_score,
        "evaluation_date": datetime.now().isoformat(),
        "evaluation_methodology": "max_over_ground_truths",
        "predictions": predictions,
        "summary_stats": {
            "avg_confidence": float(np.mean([p['Confidence'] for p in predictions])),
            "median_f1": float(np.median([p['F1_Score'] for p in predictions])),
            "samples_with_multiple_ground_truths": len([p for p in predictions if p['Num_Ground_Truths'] > 1])
        }
    }
    
    try:
        with open(results_file, "w") as f:
            json.dump(detailed_results, f, indent=2)
        print(f"βœ“ Results saved to {results_file}")
    except Exception as e:
        print(f"⚠ Warning: Could not save results file: {e}")
        results_file = None
    
    progress(1.0, desc="βœ… Evaluation completed!")
    
    return results_summary, df, results_file

def create_gradio_interface():
    """Create Gradio interface for CUAD evaluation"""
    
    with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
        <div style="text-align: center; padding: 20px;">
            <h1>πŸ›οΈ CUAD Model Evaluation Dashboard</h1>
            <p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
            <p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v3</p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.HTML("<h3>βš™οΈ Evaluation Settings</h3>")
                
                num_samples = gr.Slider(
                    minimum=10,
                    maximum=500,
                    value=100,
                    step=10,
                    label="Number of samples to evaluate",
                    info="Choose between 10-500 samples (more samples = more accurate but slower)"
                )
                
                evaluate_btn = gr.Button(
                    "πŸš€ Start Evaluation", 
                    variant="primary",
                    size="lg"
                )
                
                gr.HTML("""
                <div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
                    <h4>πŸ“‹ What this evaluates:</h4>
                    <ul>
                        <li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
                        <li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
                        <li><strong>Confidence</strong>: Model's confidence in its predictions</li>
                        <li><strong>Max-over-GT</strong>: Best score across multiple ground truth answers</li>
                    </ul>
                </div>
                """)
            
            with gr.Column(scale=2):
                gr.HTML("<h3>πŸ“Š Results</h3>")
                
                results_summary = gr.Markdown(
                    value="Click 'πŸš€ Start Evaluation' to begin...",
                    label="Evaluation Summary"
                )
        
        gr.HTML("<hr>")
        
        with gr.Row():
            gr.HTML("<h3>πŸ“‹ Detailed Results</h3>")
        
        with gr.Row():
            detailed_results = gr.Dataframe(
                label="Sample-by-Sample Results",
                interactive=False,
                wrap=True
            )
        
        with gr.Row():
            download_file = gr.File(
                label="πŸ“₯ Download Complete Results (JSON)",
                visible=False
            )
        
        # Event handlers
        def handle_evaluation(num_samples):
            summary, df, file_path = run_evaluation(num_samples)
            if file_path and os.path.exists(file_path):
                return summary, df, gr.update(visible=True, value=file_path)
            else:
                return summary, df, gr.update(visible=False)
        
        evaluate_btn.click(
            fn=handle_evaluation,
            inputs=[num_samples],
            outputs=[results_summary, detailed_results, download_file],
            show_progress=True
        )
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
            <p>πŸ€– Powered by Hugging Face Transformers & Gradio</p>
            <p>πŸ“š CUAD Dataset by The Atticus Project</p>
        </div>
        """)
    
    return demo
    
if __name__ == "__main__":
    print("CUAD Model Evaluation with Gradio Interface")
    print("=" * 50)
    
    # Check if CUDA is available
    if torch.cuda.is_available():
        print(f"βœ“ CUDA available: {torch.cuda.get_device_name(0)}")
    else:
        print("! Running on CPU")
    
    # Create and launch Gradio interface
    demo = create_gradio_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True
    )