Spaces:
Running
Running
File size: 22,079 Bytes
0f03dd5 5ad87e4 4a9c0e7 0f03dd5 02af374 0f03dd5 a1ce4b0 0f03dd5 4a9c0e7 5ad87e4 4a9c0e7 0f03dd5 4a9c0e7 0f03dd5 5ad87e4 0f03dd5 5ad87e4 4a9c0e7 5ad87e4 4a9c0e7 5ad87e4 4a9c0e7 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 a1ce4b0 0f03dd5 5ad87e4 0f03dd5 4a9c0e7 0f03dd5 8663fbd 0f03dd5 5ad87e4 0f03dd5 5ad87e4 4a9c0e7 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 8663fbd 4a9c0e7 0f03dd5 5ad87e4 4a9c0e7 5ad87e4 0f03dd5 a1ce4b0 0f03dd5 5ad87e4 4a9c0e7 0f03dd5 5ad87e4 0f03dd5 4a9c0e7 0f03dd5 a1ce4b0 0f03dd5 a1ce4b0 0f03dd5 4a9c0e7 0f03dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import os
import json
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
import torch
from sklearn.metrics import f1_score
import re
from collections import Counter
import string
from huggingface_hub import login
import gradio as gr
import pandas as pd
from datetime import datetime
def normalize_answer(s):
"""Normalize answer for evaluation"""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score_qa(prediction, ground_truth):
"""Calculate F1 score for QA"""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
return int(prediction_tokens == ground_truth_tokens)
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
"""Calculate exact match score"""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Calculate maximum score over all ground truth answers"""
scores = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores.append(score)
return max(scores) if scores else 0
def load_cuad_dataset(hf_token=None):
"""Try multiple methods to load CUAD dataset"""
print("Attempting to load CUAD dataset...")
# Method 1: Try theatticusproject/cuad
try:
print("Trying theatticusproject/cuad...")
dataset = load_dataset("theatticusproject/cuad", token=hf_token)
if "test" in dataset:
test_data = dataset["test"]
print(f"β Loaded theatticusproject/cuad with {len(test_data)} test samples")
return test_data, "theatticusproject/cuad"
elif "validation" in dataset:
test_data = dataset["validation"]
print(f"β Loaded theatticusproject/cuad with {len(test_data)} validation samples")
return test_data, "theatticusproject/cuad"
else:
print("No test or validation split found in theatticusproject/cuad")
except Exception as e:
print(f"Failed to load theatticusproject/cuad: {e}")
# Method 2: Try theatticusproject/cuad-qa
try:
print("Trying theatticusproject/cuad-qa...")
dataset = load_dataset("theatticusproject/cuad-qa", token=hf_token)
if "test" in dataset:
test_data = dataset["test"]
print(f"β Loaded theatticusproject/cuad-qa with {len(test_data)} test samples")
return test_data, "theatticusproject/cuad-qa"
elif "validation" in dataset:
test_data = dataset["validation"]
print(f"β Loaded theatticusproject/cuad-qa with {len(test_data)} validation samples")
return test_data, "theatticusproject/cuad-qa"
except Exception as e:
print(f"Failed to load theatticusproject/cuad-qa: {e}")
# Method 3: Try the original cuad identifier
try:
print("Trying cuad...")
dataset = load_dataset("cuad", token=hf_token)
if "test" in dataset:
test_data = dataset["test"]
print(f"β Loaded cuad with {len(test_data)} test samples")
return test_data, "cuad"
elif "validation" in dataset:
test_data = dataset["validation"]
print(f"β Loaded cuad with {len(test_data)} validation samples")
return test_data, "cuad"
except Exception as e:
print(f"Failed to load cuad: {e}")
# Method 4: Try with trust_remote_code=True
try:
print("Trying with trust_remote_code=True...")
dataset = load_dataset("theatticusproject/cuad", token=hf_token, trust_remote_code=True)
if "test" in dataset:
test_data = dataset["test"]
print(f"β Loaded with trust_remote_code, test samples: {len(test_data)}")
return test_data, "theatticusproject/cuad (trust_remote_code)"
elif "validation" in dataset:
test_data = dataset["validation"]
print(f"β Loaded with trust_remote_code, validation samples: {len(test_data)}")
return test_data, "theatticusproject/cuad (trust_remote_code)"
except Exception as e:
print(f"Failed with trust_remote_code: {e}")
# Method 5: Create a synthetic CUAD-like dataset for testing
print("β οΈ Creating synthetic CUAD-like test data...")
synthetic_data = []
# Create some contract-like questions and contexts
contract_samples = [
{
"context": "This Agreement shall commence on January 1, 2024 and shall continue for a period of twelve (12) months unless terminated earlier in accordance with the terms hereof. The initial term may be extended for additional periods of twelve (12) months each upon mutual written consent of both parties.",
"question": "What is the duration of the agreement?",
"answers": {"text": ["twelve (12) months", "12 months"], "answer_start": [85, 85]}
},
{
"context": "The Company shall pay the Consultant a fee of $50,000 per month for services rendered under this Agreement. Payment shall be made within thirty (30) days of the end of each calendar month.",
"question": "What is the monthly fee?",
"answers": {"text": ["$50,000 per month", "$50,000"], "answer_start": [45, 45]}
},
{
"context": "Either party may terminate this Agreement immediately upon written notice in the event of a material breach by the other party that remains uncured for thirty (30) days after written notice of such breach.",
"question": "What is the cure period for material breach?",
"answers": {"text": ["thirty (30) days", "30 days"], "answer_start": [125, 132]}
},
{
"context": "The Contractor shall maintain commercial general liability insurance with coverage of not less than $1,000,000 per occurrence and $2,000,000 in the aggregate.",
"question": "What is the minimum insurance coverage per occurrence?",
"answers": {"text": ["$1,000,000 per occurrence", "$1,000,000"], "answer_start": [85, 85]}
},
{
"context": "All intellectual property developed under this Agreement shall be owned by the Company. The Contractor hereby assigns all rights, title and interest in such intellectual property to the Company.",
"question": "Who owns the intellectual property?",
"answers": {"text": ["the Company", "Company"], "answer_start": [70, 74]}
}
]
# Duplicate samples to create a larger dataset
for i in range(100): # Create 500 samples
sample = contract_samples[i % len(contract_samples)].copy()
sample["id"] = f"synthetic_{i}"
synthetic_data.append(sample)
# Convert to dataset format
from datasets import Dataset
test_data = Dataset.from_list(synthetic_data)
print(f"β Created synthetic CUAD-like dataset with {len(test_data)} samples")
return test_data, "synthetic_cuad"
def inspect_dataset_structure(dataset, dataset_name="dataset"):
"""Inspect dataset structure for debugging"""
print(f"\n=== {dataset_name} Dataset Structure ===")
print(f"Dataset type: {type(dataset)}")
print(f"Dataset length: {len(dataset)}")
if len(dataset) > 0:
sample = dataset[0]
print(f"Sample keys: {list(sample.keys()) if isinstance(sample, dict) else 'Not a dict'}")
print(f"Sample structure:")
for key, value in sample.items():
if isinstance(value, dict):
print(f" {key} (dict): {list(value.keys())}")
for sub_key, sub_value in value.items():
print(f" {sub_key}: {type(sub_value)} - {str(sub_value)[:50]}...")
else:
print(f" {key}: {type(value)} - {str(value)[:100]}...")
print("=" * 50)
return dataset
def evaluate_model():
# Authenticate with Hugging Face using the token
hf_token = os.getenv("EVAL_TOKEN")
if hf_token:
try:
login(token=hf_token)
print("β Authenticated with Hugging Face")
except Exception as e:
print(f"β Warning: Could not authenticate with HF token: {e}")
else:
print("β Warning: EVAL_TOKEN not found in environment variables")
print("Loading model and tokenizer...")
model_name = "AvocadoMuffin/roberta-cuad-qa-v3"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
print("β Model loaded successfully")
return qa_pipeline, hf_token
except Exception as e:
print(f"β Error loading model: {e}")
return None, None
def run_evaluation(num_samples, progress=gr.Progress()):
"""Run evaluation and return results for Gradio interface"""
# Load model
qa_pipeline, hf_token = evaluate_model()
if qa_pipeline is None:
return "β Failed to load model", pd.DataFrame(), None
progress(0.1, desc="Loading CUAD dataset...")
# Load dataset
test_data, dataset_name = load_cuad_dataset(hf_token)
if test_data is None:
return "β Failed to load any dataset", pd.DataFrame(), None
# Inspect dataset structure
test_data = inspect_dataset_structure(test_data, dataset_name)
# Limit samples
num_samples = min(num_samples, len(test_data))
test_subset = test_data.select(range(num_samples))
progress(0.2, desc=f"Starting evaluation on {num_samples} samples from {dataset_name}...")
# Initialize metrics
exact_matches = []
f1_scores = []
predictions = []
# Run evaluation
for i, example in enumerate(test_subset):
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
try:
# Handle different dataset formats
if "context" in example:
context = example["context"]
elif "text" in example:
context = example["text"]
else:
print(f"Warning: No context found in sample {i}")
continue
if "question" in example:
question = example["question"]
elif "title" in example:
question = example["title"]
else:
print(f"Warning: No question found in sample {i}")
continue
# Handle answers field
ground_truths = []
if "answers" in example:
answers = example["answers"]
if isinstance(answers, dict):
if "text" in answers:
if isinstance(answers["text"], list):
ground_truths = [ans for ans in answers["text"] if ans and ans.strip()]
else:
ground_truths = [answers["text"]] if answers["text"] and answers["text"].strip() else []
elif isinstance(answers, list):
ground_truths = [ans for ans in answers if ans and ans.strip()]
# Skip if no ground truth
if not ground_truths:
print(f"Warning: No ground truth found for sample {i}")
continue
# Get model prediction
try:
result = qa_pipeline(question=question, context=context)
predicted_answer = result["answer"]
confidence = result["score"]
except Exception as e:
print(f"Error getting prediction for sample {i}: {e}")
continue
# Calculate metrics using max over ground truths
em = max_over_ground_truths(exact_match_score, predicted_answer, ground_truths)
f1 = max_over_ground_truths(f1_score_qa, predicted_answer, ground_truths)
exact_matches.append(em)
f1_scores.append(f1)
predictions.append({
"Sample_ID": i+1,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Predicted_Answer": predicted_answer[:100] + "..." if len(predicted_answer) > 100 else predicted_answer,
"Ground_Truth": ground_truths[0][:100] + "..." if len(ground_truths[0]) > 100 else ground_truths[0],
"Num_Ground_Truths": len(ground_truths),
"Exact_Match": em,
"F1_Score": round(f1, 3),
"Confidence": round(confidence, 3)
})
except Exception as e:
print(f"Error processing sample {i}: {e}")
continue
progress(0.9, desc="Calculating final metrics...")
# Calculate final metrics
if len(exact_matches) == 0:
return "β No samples were successfully processed", pd.DataFrame(), None
avg_exact_match = np.mean(exact_matches) * 100
avg_f1_score = np.mean(f1_scores) * 100
# Calculate additional statistics
high_confidence_samples = [p for p in predictions if p['Confidence'] > 0.8]
perfect_matches = [p for p in predictions if p['Exact_Match'] == 1]
high_f1_samples = [p for p in predictions if p['F1_Score'] > 0.8]
# Create results summary
results_summary = f"""
# π CUAD Model Evaluation Results
## β οΈ Dataset Information
- **Dataset Used**: {dataset_name}
- **Dataset Status**: {"β
Authentic CUAD" if "cuad" in dataset_name.lower() and "synthetic" not in dataset_name else "β οΈ Fallback/Synthetic Data"}
## π― Overall Performance
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
- **Samples Evaluated**: {len(exact_matches)}
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
## π Core Metrics
- **Exact Match Score**: {avg_exact_match:.2f}%
- **F1 Score**: {avg_f1_score:.2f}%
## π Performance Analysis
- **High Confidence Predictions (>0.8)**: {len(high_confidence_samples)} ({len(high_confidence_samples)/len(predictions)*100:.1f}%)
- **Perfect Matches**: {len(perfect_matches)} ({len(perfect_matches)/len(predictions)*100:.1f}%)
- **High F1 Scores (>0.8)**: {len(high_f1_samples)} ({len(high_f1_samples)/len(predictions)*100:.1f}%)
## π Distribution
- **Average Confidence**: {np.mean([p['Confidence'] for p in predictions]):.3f}
- **Median F1 Score**: {np.median([p['F1_Score'] for p in predictions]):.3f}
- **Samples with Multiple Ground Truths**: {len([p for p in predictions if p['Num_Ground_Truths'] > 1])}
## π― Evaluation Quality
{"β
This evaluation uses the proper CUAD dataset for contract understanding tasks." if "cuad" in dataset_name.lower() and "synthetic" not in dataset_name else "β οΈ WARNING: This evaluation used fallback data. Results may not be representative of actual CUAD performance."}
The evaluation accounts for multiple ground truth answers where available, using the maximum score across all valid answers for each question.
"""
# Create detailed results DataFrame
df = pd.DataFrame(predictions)
# Save results to file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f"cuad_evaluation_results_{timestamp}.json"
detailed_results = {
"model_name": "AvocadoMuffin/roberta-cuad-qa-v3",
"dataset": dataset_name,
"num_samples": len(exact_matches),
"exact_match_score": avg_exact_match,
"f1_score": avg_f1_score,
"evaluation_date": datetime.now().isoformat(),
"evaluation_methodology": "max_over_ground_truths",
"dataset_authentic": "cuad" in dataset_name.lower() and "synthetic" not in dataset_name,
"predictions": predictions,
"summary_stats": {
"avg_confidence": float(np.mean([p['Confidence'] for p in predictions])),
"median_f1": float(np.median([p['F1_Score'] for p in predictions])),
"samples_with_multiple_ground_truths": len([p for p in predictions if p['Num_Ground_Truths'] > 1])
}
}
try:
with open(results_file, "w") as f:
json.dump(detailed_results, f, indent=2)
print(f"β Results saved to {results_file}")
except Exception as e:
print(f"β Warning: Could not save results file: {e}")
results_file = None
progress(1.0, desc="β
Evaluation completed!")
return results_summary, df, results_file
def create_gradio_interface():
"""Create Gradio interface for CUAD evaluation"""
with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v3</p>
<p><em>This tool will attempt to load the authentic CUAD dataset, with fallbacks if needed.</em></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>βοΈ Evaluation Settings</h3>")
num_samples = gr.Slider(
minimum=10,
maximum=500,
value=100,
step=10,
label="Number of samples to evaluate",
info="Choose between 10-500 samples (more samples = more accurate but slower)"
)
evaluate_btn = gr.Button(
"π Start Evaluation",
variant="primary",
size="lg"
)
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
<h4>π What this evaluates:</h4>
<ul>
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
<li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
<li><strong>Confidence</strong>: Model's confidence in its predictions</li>
<li><strong>Max-over-GT</strong>: Best score across multiple ground truth answers</li>
</ul>
<p><strong>Note:</strong> This tool will try to load the authentic CUAD dataset. If that fails, it will use synthetic contract data for testing purposes.</p>
</div>
""")
with gr.Column(scale=2):
gr.HTML("<h3>π Results</h3>")
results_summary = gr.Markdown(
value="Click 'π Start Evaluation' to begin...",
label="Evaluation Summary"
)
gr.HTML("<hr>")
with gr.Row():
gr.HTML("<h3>π Detailed Results</h3>")
with gr.Row():
detailed_results = gr.Dataframe(
label="Sample-by-Sample Results",
interactive=False,
wrap=True
)
with gr.Row():
download_file = gr.File(
label="π₯ Download Complete Results (JSON)",
visible=False
)
# Event handlers
def handle_evaluation(num_samples):
summary, df, file_path = run_evaluation(num_samples)
if file_path and os.path.exists(file_path):
return summary, df, gr.update(visible=True, value=file_path)
else:
return summary, df, gr.update(visible=False)
evaluate_btn.click(
fn=handle_evaluation,
inputs=[num_samples],
outputs=[results_summary, detailed_results, download_file],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
<p>π€ Powered by Hugging Face Transformers & Gradio</p>
<p>π CUAD Dataset by The Atticus Project</p>
<p><small>β οΈ If authentic CUAD data cannot be loaded, synthetic contract data will be used for testing purposes.</small></p>
</div>
""")
return demo
if __name__ == "__main__":
print("CUAD Model Evaluation with Gradio Interface")
print("=" * 50)
# Check if CUDA is available
if torch.cuda.is_available():
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
else:
print("! Running on CPU")
# Create and launch Gradio interface
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
) |