import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration from pydub import AudioSegment import soundfile as sf import os model_name = "openai/whisper-base" processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) def preprocess_audio(input_audio_path, output_audio_path): """ Converts audio to 16kHz WAV format. Args: input_audio_path (str): Path to the input audio file. output_audio_path (str): Path to save the processed audio file. Returns: str: Path to the processed audio file. """ audio = AudioSegment.from_file(input_audio_path) audio = audio.set_frame_rate(16000).set_channels(1) audio.export(output_audio_path, format="wav") return output_audio_path def split_audio(audio_path, chunk_length_ms=30000): """ Splits audio into chunks of specified length. Args: audio_path (str): Path to the audio file. chunk_length_ms (int): Length of each chunk in milliseconds. Returns: list: List of audio chunks. """ audio = AudioSegment.from_file(audio_path) chunks = [audio[i : i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)] return chunks def transcribe_chunk(audio_chunk, chunk_index): """ Transcribes a single audio chunk. Args: audio_chunk (AudioSegment): The audio chunk to transcribe. chunk_index (int): Index of the chunk. Returns: str: Transcription of the chunk. """ temp_path = f"temp_chunk_{chunk_index}.wav" audio_chunk.export(temp_path, format="wav") audio, sampling_rate = sf.read(temp_path) inputs = processor(audio, sampling_rate=16000, return_tensors="pt") input_features = inputs.input_features.to(device) predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] os.remove(temp_path) # Clean up temporary file return transcription def speech_to_text_long(audio_path): """ Transcribes a long audio file by splitting it into chunks. Args: audio_path (str): Path to the audio file. Returns: str: Full transcription of the audio. """ processed_audio_path = "processed_audio.wav" preprocess_audio(audio_path, processed_audio_path) # Split audio into chunks chunks = split_audio(processed_audio_path, chunk_length_ms=30000) # 30 seconds per chunk transcriptions = [] for idx, chunk in enumerate(chunks): print(f"Transcribing chunk {idx + 1} of {len(chunks)}...") transcription = transcribe_chunk(chunk, idx) transcriptions.append(transcription) return " ".join(transcriptions)