Spaces:
Runtime error
Runtime error
import librosa | |
import torch | |
import numpy as np | |
def preprocess_audio(audio_array, feature_extractor, sampling_rate, max_length=3000): | |
""" | |
Preprocesses audio for emotion prediction. | |
""" | |
inputs = feature_extractor( | |
audio_array, | |
sampling_rate=sampling_rate, | |
return_tensors="pt", | |
) | |
mel_features = inputs["input_features"] | |
current_length = mel_features.size(2) | |
if current_length < max_length: | |
pad_size = max_length - current_length | |
mel_features = torch.nn.functional.pad(mel_features, (0, pad_size), mode="constant", value=0) | |
elif current_length > max_length: | |
mel_features = mel_features[:, :, :max_length] | |
inputs["input_features"] = mel_features | |
return inputs | |
def predict_emotion(audio_path, model, feature_extractor, id2label, sampling_rate=16000, chunk_duration=8.0): | |
""" | |
Predicts emotions from an audio file. | |
""" | |
audio_array, _ = librosa.load(audio_path, sr=sampling_rate) | |
chunk_length = int(sampling_rate * chunk_duration) | |
num_chunks = len(audio_array) // chunk_length + int(len(audio_array) % chunk_length > 0) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
results = [] | |
for i in range(num_chunks): | |
start = i * chunk_length | |
end = min((i + 1) * chunk_length, len(audio_array)) | |
chunk = audio_array[start:end] | |
start_time = round(start / sampling_rate, 2) | |
end_time = round(end / sampling_rate, 2) | |
inputs = preprocess_audio(chunk, feature_extractor, sampling_rate, max_length=3000) | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_id = torch.argmax(logits, dim=-1).item() | |
predicted_label = id2label[predicted_id] | |
results.append({"chunk": i + 1, "start_time": start_time, "end_time": end_time, "emotion": predicted_label}) | |
return results | |