spanish-embeddings-api / app_old_minimal.py
Jordi Catafal
should work xd
03eefac
raw
history blame
5.74 kB
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List
import torch
import uvicorn
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory
# Global model cache - completely on-demand loading
models_cache = {}
# All models load on demand to test deployment
ON_DEMAND_MODELS = ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"]
def ensure_model_loaded(model_name: str):
"""Load a specific model on demand if not already loaded"""
global models_cache
if model_name not in models_cache:
if model_name in ON_DEMAND_MODELS:
try:
print(f"Loading model on demand: {model_name}...")
new_models = load_models([model_name])
models_cache.update(new_models)
print(f"Model {model_name} loaded successfully!")
except Exception as e:
print(f"Failed to load model {model_name}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model {model_name} loading failed: {str(e)}")
else:
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
app = FastAPI(
title="Multilingual & Legal Embedding API",
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
version="3.0.0"
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {
"message": "Multilingual & Legal Embedding API - Minimal Version",
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"status": "running",
"docs": "/docs",
"total_models": 5,
"note": "All models load on first request"
}
@app.post("/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
"""Generate embeddings for input texts"""
try:
# Load specific model on demand
ensure_model_loaded(request.model)
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
if len(request.texts) > 50: # Rate limiting
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
embeddings = get_embeddings(
request.texts,
request.model,
models_cache,
request.normalize,
request.max_length
)
# Cleanup memory after large batches
if len(request.texts) > 20:
cleanup_memory()
return EmbeddingResponse(
embeddings=embeddings,
model_used=request.model,
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
"""List available models and their specifications"""
return [
ModelInfo(
model_id="jina",
name="jinaai/jina-embeddings-v2-base-es",
dimensions=768,
max_sequence_length=8192,
languages=["Spanish", "English"],
model_type="bilingual",
description="Bilingual Spanish-English embeddings with long context support"
),
ModelInfo(
model_id="robertalex",
name="PlanTL-GOB-ES/RoBERTalex",
dimensions=768,
max_sequence_length=512,
languages=["Spanish"],
model_type="legal domain",
description="Spanish legal domain specialized embeddings"
),
ModelInfo(
model_id="jina-v3",
name="jinaai/jina-embeddings-v3",
dimensions=1024,
max_sequence_length=8192,
languages=["Multilingual"],
model_type="multilingual",
description="Latest Jina v3 with superior multilingual performance"
),
ModelInfo(
model_id="legal-bert",
name="nlpaueb/legal-bert-base-uncased",
dimensions=768,
max_sequence_length=512,
languages=["English"],
model_type="legal domain",
description="English legal domain BERT model"
),
ModelInfo(
model_id="roberta-ca",
name="projecte-aina/roberta-large-ca-v2",
dimensions=1024,
max_sequence_length=512,
languages=["Catalan"],
model_type="general",
description="Catalan RoBERTa-large model trained on large corpus"
)
]
@app.get("/health")
async def health_check():
"""Health check endpoint"""
all_models_loaded = len(models_cache) == 5
return {
"status": "healthy",
"all_models_loaded": all_models_loaded,
"available_models": list(models_cache.keys()),
"on_demand_models": ON_DEMAND_MODELS,
"models_count": len(models_cache),
"note": "All models load on first embedding request - minimal deployment version"
}
if __name__ == "__main__":
# Set multi-threading for CPU
torch.set_num_threads(8)
torch.set_num_interop_threads(1)
uvicorn.run(app, host="0.0.0.0", port=7860)