Spaces:
Sleeping
Sleeping
File size: 6,270 Bytes
c3aef13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# utils/helpers.py
"""Helper functions for model loading and embedding generation"""
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, RobertaTokenizer, RobertaModel
from typing import List, Dict, Optional
import gc
import os
def load_models() -> Dict:
"""
Load both embedding models with memory optimization
Returns:
Dict containing loaded models and tokenizers
"""
models_cache = {}
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
# Load Jina model
print("Loading Jina embeddings model...")
jina_tokenizer = AutoTokenizer.from_pretrained(
'jinaai/jina-embeddings-v2-base-es',
trust_remote_code=True
)
jina_model = AutoModel.from_pretrained(
'jinaai/jina-embeddings-v2-base-es',
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
jina_model.eval()
# Load RoBERTalex model
print("Loading RoBERTalex model...")
robertalex_tokenizer = RobertaTokenizer.from_pretrained('PlanTL-GOB-ES/RoBERTalex')
robertalex_model = RobertaModel.from_pretrained(
'PlanTL-GOB-ES/RoBERTalex',
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
robertalex_model.eval()
models_cache = {
'jina': {
'tokenizer': jina_tokenizer,
'model': jina_model,
'device': device
},
'robertalex': {
'tokenizer': robertalex_tokenizer,
'model': robertalex_model,
'device': device
}
}
# Force garbage collection after loading
gc.collect()
return models_cache
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
def mean_pooling(model_output, attention_mask):
"""
Apply mean pooling to get sentence embeddings
Args:
model_output: Model output containing token embeddings
attention_mask: Attention mask for valid tokens
Returns:
Pooled embeddings
"""
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def get_embeddings(
texts: List[str],
model_name: str,
models_cache: Dict,
normalize: bool = True,
max_length: Optional[int] = None
) -> List[List[float]]:
"""
Generate embeddings for texts using specified model
Args:
texts: List of texts to embed
model_name: Name of model to use ('jina' or 'robertalex')
models_cache: Dictionary containing loaded models
normalize: Whether to normalize embeddings
max_length: Maximum sequence length
Returns:
List of embedding vectors
"""
if model_name not in models_cache:
raise ValueError(f"Model {model_name} not available. Choose 'jina' or 'robertalex'")
tokenizer = models_cache[model_name]['tokenizer']
model = models_cache[model_name]['model']
device = models_cache[model_name]['device']
# Set max length based on model capabilities
if max_length is None:
max_length = 8192 if model_name == 'jina' else 512
# Process in batches for memory efficiency
batch_size = 8 if len(texts) > 8 else len(texts)
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
# Tokenize inputs
encoded_input = tokenizer(
batch_texts,
padding=True,
truncation=True,
max_length=max_length,
return_tensors='pt'
).to(device)
# Generate embeddings
with torch.no_grad():
model_output = model(**encoded_input)
if model_name == 'jina':
# Jina models require mean pooling
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
else:
# RoBERTalex: use [CLS] token embedding
embeddings = model_output.last_hidden_state[:, 0, :]
# Normalize if requested
if normalize:
embeddings = F.normalize(embeddings, p=2, dim=1)
# Convert to CPU and list
batch_embeddings = embeddings.cpu().numpy().tolist()
all_embeddings.extend(batch_embeddings)
return all_embeddings
def cleanup_memory():
"""Force garbage collection and clear cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def validate_input_texts(texts: List[str]) -> List[str]:
"""
Validate and clean input texts
Args:
texts: List of input texts
Returns:
Cleaned texts
"""
cleaned_texts = []
for text in texts:
# Remove excess whitespace
text = ' '.join(text.split())
# Skip empty texts
if text:
cleaned_texts.append(text)
if not cleaned_texts:
raise ValueError("No valid texts provided after cleaning")
return cleaned_texts
def get_model_info(model_name: str) -> Dict:
"""
Get detailed information about a model
Args:
model_name: Model identifier
Returns:
Dictionary with model information
"""
model_info = {
'jina': {
'full_name': 'jinaai/jina-embeddings-v2-base-es',
'dimensions': 768,
'max_length': 8192,
'pooling': 'mean',
'languages': ['Spanish', 'English']
},
'robertalex': {
'full_name': 'PlanTL-GOB-ES/RoBERTalex',
'dimensions': 768,
'max_length': 512,
'pooling': 'cls',
'languages': ['Spanish']
}
}
return model_info.get(model_name, {}) |