Spaces:
Sleeping
Sleeping
File size: 5,146 Bytes
0610fdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List
import torch
import uvicorn
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory
# Global model cache
models_cache = {}
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan handler for startup and shutdown"""
# Startup
try:
global models_cache
print("Loading models...")
models_cache = load_models()
print("All models loaded successfully!")
yield
except Exception as e:
print(f"Failed to load models: {str(e)}")
raise
finally:
# Shutdown - cleanup resources
cleanup_memory()
app = FastAPI(
title="Multilingual & Legal Embedding API",
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
version="3.0.0",
lifespan=lifespan
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {
"message": "Multilingual & Legal Embedding API",
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"status": "running",
"docs": "/docs",
"total_models": 5
}
@app.post("/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
"""Generate embeddings for input texts"""
try:
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
if len(request.texts) > 50: # Rate limiting
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
embeddings = get_embeddings(
request.texts,
request.model,
models_cache,
request.normalize,
request.max_length
)
# Cleanup memory after large batches
if len(request.texts) > 20:
cleanup_memory()
return EmbeddingResponse(
embeddings=embeddings,
model_used=request.model,
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
"""List available models and their specifications"""
return [
ModelInfo(
model_id="jina",
name="jinaai/jina-embeddings-v2-base-es",
dimensions=768,
max_sequence_length=8192,
languages=["Spanish", "English"],
model_type="bilingual",
description="Bilingual Spanish-English embeddings with long context support"
),
ModelInfo(
model_id="robertalex",
name="PlanTL-GOB-ES/RoBERTalex",
dimensions=768,
max_sequence_length=512,
languages=["Spanish"],
model_type="legal domain",
description="Spanish legal domain specialized embeddings"
),
ModelInfo(
model_id="jina-v3",
name="jinaai/jina-embeddings-v3",
dimensions=1024,
max_sequence_length=8192,
languages=["Multilingual"],
model_type="multilingual",
description="Latest Jina v3 with superior multilingual performance"
),
ModelInfo(
model_id="legal-bert",
name="nlpaueb/legal-bert-base-uncased",
dimensions=768,
max_sequence_length=512,
languages=["English"],
model_type="legal domain",
description="English legal domain BERT model"
),
ModelInfo(
model_id="roberta-ca",
name="projecte-aina/roberta-large-ca-v2",
dimensions=1024,
max_sequence_length=512,
languages=["Catalan"],
model_type="general",
description="Catalan RoBERTa-large model trained on large corpus"
)
]
@app.get("/health")
async def health_check():
"""Health check endpoint"""
models_loaded = len(models_cache) == 5
return {
"status": "healthy" if models_loaded else "degraded",
"models_loaded": models_loaded,
"available_models": list(models_cache.keys()),
"expected_models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"models_count": len(models_cache)
}
if __name__ == "__main__":
# Set multi-threading for CPU
torch.set_num_threads(8)
torch.set_num_interop_threads(1)
uvicorn.run(app, host="0.0.0.0", port=7860) |