Spaces:
Sleeping
Sleeping
File size: 6,617 Bytes
ebb30ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List
import torch
import uvicorn
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory
# Global model cache
models_cache = {}
# Models to load at startup (most frequently used)
STARTUP_MODELS = ["jina-v3", "roberta-ca"]
# Models to load on demand
ON_DEMAND_MODELS = ["jina", "robertalex", "legal-bert"]
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan handler for startup and shutdown"""
# Startup - load priority models
try:
global models_cache
print(f"Loading startup models: {STARTUP_MODELS}...")
models_cache = load_models(STARTUP_MODELS)
print(f"Startup models loaded successfully: {list(models_cache.keys())}")
yield
except Exception as e:
print(f"Failed to load startup models: {str(e)}")
# Continue anyway - models can be loaded on demand
yield
finally:
# Shutdown - cleanup resources
cleanup_memory()
def ensure_model_loaded(model_name: str):
"""Load a specific model on demand if not already loaded"""
global models_cache
if model_name not in models_cache:
if model_name in ON_DEMAND_MODELS:
try:
print(f"Loading model on demand: {model_name}...")
new_models = load_models([model_name])
models_cache.update(new_models)
print(f"Model {model_name} loaded successfully!")
except Exception as e:
print(f"Failed to load model {model_name}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model {model_name} loading failed: {str(e)}")
else:
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
app = FastAPI(
title="Multilingual & Legal Embedding API",
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
version="3.0.0",
lifespan=lifespan
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {
"message": "Multilingual & Legal Embedding API",
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"status": "running",
"docs": "/docs",
"total_models": 5
}
@app.post("/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
"""Generate embeddings for input texts"""
try:
# Load specific model on demand if needed
ensure_model_loaded(request.model)
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
if len(request.texts) > 50: # Rate limiting
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
embeddings = get_embeddings(
request.texts,
request.model,
models_cache,
request.normalize,
request.max_length
)
# Cleanup memory after large batches
if len(request.texts) > 20:
cleanup_memory()
return EmbeddingResponse(
embeddings=embeddings,
model_used=request.model,
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
"""List available models and their specifications"""
return [
ModelInfo(
model_id="jina",
name="jinaai/jina-embeddings-v2-base-es",
dimensions=768,
max_sequence_length=8192,
languages=["Spanish", "English"],
model_type="bilingual",
description="Bilingual Spanish-English embeddings with long context support"
),
ModelInfo(
model_id="robertalex",
name="PlanTL-GOB-ES/RoBERTalex",
dimensions=768,
max_sequence_length=512,
languages=["Spanish"],
model_type="legal domain",
description="Spanish legal domain specialized embeddings"
),
ModelInfo(
model_id="jina-v3",
name="jinaai/jina-embeddings-v3",
dimensions=1024,
max_sequence_length=8192,
languages=["Multilingual"],
model_type="multilingual",
description="Latest Jina v3 with superior multilingual performance"
),
ModelInfo(
model_id="legal-bert",
name="nlpaueb/legal-bert-base-uncased",
dimensions=768,
max_sequence_length=512,
languages=["English"],
model_type="legal domain",
description="English legal domain BERT model"
),
ModelInfo(
model_id="roberta-ca",
name="projecte-aina/roberta-large-ca-v2",
dimensions=1024,
max_sequence_length=512,
languages=["Catalan"],
model_type="general",
description="Catalan RoBERTa-large model trained on large corpus"
)
]
@app.get("/health")
async def health_check():
"""Health check endpoint"""
startup_models_loaded = all(model in models_cache for model in STARTUP_MODELS)
all_models_loaded = len(models_cache) == 5
return {
"status": "healthy" if startup_models_loaded else "partial",
"startup_models_loaded": startup_models_loaded,
"all_models_loaded": all_models_loaded,
"available_models": list(models_cache.keys()),
"startup_models": STARTUP_MODELS,
"on_demand_models": ON_DEMAND_MODELS,
"models_count": len(models_cache),
"note": f"Startup models: {STARTUP_MODELS} | On-demand: {ON_DEMAND_MODELS}"
}
if __name__ == "__main__":
# Set multi-threading for CPU
torch.set_num_threads(8)
torch.set_num_interop_threads(1)
uvicorn.run(app, host="0.0.0.0", port=7860) |