Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,21 @@
|
|
| 1 |
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
import soundfile as sf
|
| 5 |
-
import spaces
|
| 6 |
-
import os
|
| 7 |
-
import numpy as np
|
| 8 |
-
import re
|
| 9 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 10 |
-
from speechbrain.pretrained import EncoderClassifier
|
| 11 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
-
|
| 15 |
-
def load_models_and_data():
|
| 16 |
-
model_name = "microsoft/speecht5_tts"
|
| 17 |
-
processor = SpeechT5Processor.from_pretrained(model_name)
|
| 18 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts").to(device)
|
| 19 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 20 |
-
|
| 21 |
-
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
| 22 |
-
speaker_model = EncoderClassifier.from_hparams(
|
| 23 |
-
source=spk_model_name,
|
| 24 |
-
run_opts={"device": device},
|
| 25 |
-
savedir=os.path.join("/tmp", spk_model_name),
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Load a sample from a dataset for default embedding
|
| 29 |
-
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 30 |
-
example = dataset[14]
|
| 31 |
-
|
| 32 |
-
return model, processor, vocoder, speaker_model, example
|
| 33 |
-
|
| 34 |
-
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
| 35 |
-
|
| 36 |
-
def create_speaker_embedding(waveform):
|
| 37 |
-
with torch.no_grad():
|
| 38 |
-
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
| 39 |
-
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 40 |
-
speaker_embeddings = speaker_embeddings.squeeze()
|
| 41 |
-
return speaker_embeddings
|
| 42 |
-
|
| 43 |
-
def prepare_default_embedding(example):
|
| 44 |
-
audio = example["audio"]
|
| 45 |
-
return create_speaker_embedding(audio["array"])
|
| 46 |
-
|
| 47 |
-
default_embedding = prepare_default_embedding(default_example)
|
| 48 |
|
| 49 |
replacements = [
|
| 50 |
('à', 'ah'),
|
|
@@ -96,51 +67,37 @@ def replace_numbers_with_words(text):
|
|
| 96 |
|
| 97 |
return result
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
text
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
speech_np = speech.cpu().numpy()
|
| 131 |
-
|
| 132 |
-
return (24000, speech_np)
|
| 133 |
-
|
| 134 |
-
iface = gr.Interface(
|
| 135 |
-
fn=text_to_speech,
|
| 136 |
-
inputs=[
|
| 137 |
-
gr.Textbox(label="Enter Italian text to convert to speech")
|
| 138 |
-
],
|
| 139 |
-
outputs=[
|
| 140 |
-
gr.Audio(label="Generated Speech", type="numpy")
|
| 141 |
-
],
|
| 142 |
-
title="Italian SpeechT5 Text-to-Speech Demo",
|
| 143 |
-
description="Enter Italian text, and listen to the generated speech."
|
| 144 |
)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
| 1 |
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
+
from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
|
| 6 |
+
|
| 7 |
+
# Load the fine-tuned model and vocoder for Italian from the new model ID
|
| 8 |
+
model_id = "Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts"
|
| 9 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
| 10 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 11 |
+
|
| 12 |
+
# Load speaker embeddings dataset
|
| 13 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 14 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
| 15 |
+
|
| 16 |
+
# Load processor for the new Italian model
|
| 17 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
replacements = [
|
| 21 |
('à', 'ah'),
|
|
|
|
| 67 |
|
| 68 |
return result
|
| 69 |
|
| 70 |
+
# Text-to-speech synthesis function
|
| 71 |
+
def synthesize_speech(text):
|
| 72 |
+
# Clean up text for Italian-specific accents
|
| 73 |
+
for src, dst in replacements:
|
| 74 |
+
text = text.replace(src, dst)
|
| 75 |
+
|
| 76 |
+
# Process input text
|
| 77 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 78 |
+
|
| 79 |
+
# Generate speech using the model and vocoder
|
| 80 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
| 81 |
+
|
| 82 |
+
# Return the generated speech as (sample_rate, audio_array)
|
| 83 |
+
return (16000, speech.cpu().numpy())
|
| 84 |
+
|
| 85 |
+
# Title and description for the Gradio interface
|
| 86 |
+
title = "Fine-tuning TTS for a Italian Language Using SpeechT5"
|
| 87 |
+
description = """
|
| 88 |
+
This Space generates speech in Italian using the fine-tuned SpeechT5 model from Hugging Face.
|
| 89 |
+
The model is fine-tuned on the VoxPopuli Italian dataset.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
# Create Gradio interface
|
| 93 |
+
interface = gr.Interface(
|
| 94 |
+
fn=synthesize_speech,
|
| 95 |
+
inputs=gr.Textbox(label="Input Text", placeholder="Enter Italian text"),
|
| 96 |
+
outputs=gr.Audio(label="Generated Speech"),
|
| 97 |
+
title=title,
|
| 98 |
+
description=description,
|
| 99 |
+
examples=["Buongiorno, come sta? Buona giornata"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
+
# Launch the interface
|
| 103 |
+
interface.launch()
|