Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,21 @@
|
|
1 |
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
import soundfile as sf
|
5 |
-
import spaces
|
6 |
-
import os
|
7 |
-
import numpy as np
|
8 |
-
import re
|
9 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
-
from speechbrain.pretrained import EncoderClassifier
|
11 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
|
15 |
-
def load_models_and_data():
|
16 |
-
model_name = "microsoft/speecht5_tts"
|
17 |
-
processor = SpeechT5Processor.from_pretrained(model_name)
|
18 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts").to(device)
|
19 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
-
|
21 |
-
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
22 |
-
speaker_model = EncoderClassifier.from_hparams(
|
23 |
-
source=spk_model_name,
|
24 |
-
run_opts={"device": device},
|
25 |
-
savedir=os.path.join("/tmp", spk_model_name),
|
26 |
-
)
|
27 |
-
|
28 |
-
# Load a sample from a dataset for default embedding
|
29 |
-
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
30 |
-
example = dataset[14]
|
31 |
-
|
32 |
-
return model, processor, vocoder, speaker_model, example
|
33 |
-
|
34 |
-
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
35 |
-
|
36 |
-
def create_speaker_embedding(waveform):
|
37 |
-
with torch.no_grad():
|
38 |
-
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
39 |
-
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
40 |
-
speaker_embeddings = speaker_embeddings.squeeze()
|
41 |
-
return speaker_embeddings
|
42 |
-
|
43 |
-
def prepare_default_embedding(example):
|
44 |
-
audio = example["audio"]
|
45 |
-
return create_speaker_embedding(audio["array"])
|
46 |
-
|
47 |
-
default_embedding = prepare_default_embedding(default_example)
|
48 |
|
49 |
replacements = [
|
50 |
('à', 'ah'),
|
@@ -96,51 +67,37 @@ def replace_numbers_with_words(text):
|
|
96 |
|
97 |
return result
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
text
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
speech_np = speech.cpu().numpy()
|
131 |
-
|
132 |
-
return (24000, speech_np)
|
133 |
-
|
134 |
-
iface = gr.Interface(
|
135 |
-
fn=text_to_speech,
|
136 |
-
inputs=[
|
137 |
-
gr.Textbox(label="Enter Italian text to convert to speech")
|
138 |
-
],
|
139 |
-
outputs=[
|
140 |
-
gr.Audio(label="Generated Speech", type="numpy")
|
141 |
-
],
|
142 |
-
title="Italian SpeechT5 Text-to-Speech Demo",
|
143 |
-
description="Enter Italian text, and listen to the generated speech."
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from datasets import load_dataset
|
5 |
+
from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
|
6 |
+
|
7 |
+
# Load the fine-tuned model and vocoder for Italian from the new model ID
|
8 |
+
model_id = "Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts"
|
9 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
10 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
11 |
+
|
12 |
+
# Load speaker embeddings dataset
|
13 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
14 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
15 |
+
|
16 |
+
# Load processor for the new Italian model
|
17 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
replacements = [
|
21 |
('à', 'ah'),
|
|
|
67 |
|
68 |
return result
|
69 |
|
70 |
+
# Text-to-speech synthesis function
|
71 |
+
def synthesize_speech(text):
|
72 |
+
# Clean up text for Italian-specific accents
|
73 |
+
for src, dst in replacements:
|
74 |
+
text = text.replace(src, dst)
|
75 |
+
|
76 |
+
# Process input text
|
77 |
+
inputs = processor(text=text, return_tensors="pt")
|
78 |
+
|
79 |
+
# Generate speech using the model and vocoder
|
80 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
81 |
+
|
82 |
+
# Return the generated speech as (sample_rate, audio_array)
|
83 |
+
return (16000, speech.cpu().numpy())
|
84 |
+
|
85 |
+
# Title and description for the Gradio interface
|
86 |
+
title = "Fine-tuning TTS for a Italian Language Using SpeechT5"
|
87 |
+
description = """
|
88 |
+
This Space generates speech in Italian using the fine-tuned SpeechT5 model from Hugging Face.
|
89 |
+
The model is fine-tuned on the VoxPopuli Italian dataset.
|
90 |
+
"""
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
interface = gr.Interface(
|
94 |
+
fn=synthesize_speech,
|
95 |
+
inputs=gr.Textbox(label="Input Text", placeholder="Enter Italian text"),
|
96 |
+
outputs=gr.Audio(label="Generated Speech"),
|
97 |
+
title=title,
|
98 |
+
description=description,
|
99 |
+
examples=["Buongiorno, come sta? Buona giornata"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
)
|
101 |
|
102 |
+
# Launch the interface
|
103 |
+
interface.launch()
|