|  | import glob | 
					
						
						|  | import json | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  |  | 
					
						
						|  | import dateutil | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | from src.display.formatting import make_clickable_model | 
					
						
						|  | from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType | 
					
						
						|  | from src.submission.check_validity import is_model_on_hub | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class EvalResult: | 
					
						
						|  | """Represents one full evaluation. Built from a combination of the result and request file for a given run. | 
					
						
						|  | """ | 
					
						
						|  | eval_name: str | 
					
						
						|  | full_model: str | 
					
						
						|  | org: str | 
					
						
						|  | model: str | 
					
						
						|  | revision: str | 
					
						
						|  | results: dict | 
					
						
						|  | precision: Precision = Precision.Unknown | 
					
						
						|  | model_type: ModelType = ModelType.Unknown | 
					
						
						|  | weight_type: WeightType = WeightType.Original | 
					
						
						|  | architecture: str = "Unknown" | 
					
						
						|  | license: str = "?" | 
					
						
						|  | likes: int = 0 | 
					
						
						|  | num_params: int = 0 | 
					
						
						|  | date: str = "" | 
					
						
						|  | still_on_hub: bool = False | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def init_from_json_file(self, json_filepath): | 
					
						
						|  | """Inits the result from the specific model result file""" | 
					
						
						|  | with open(json_filepath) as fp: | 
					
						
						|  | data = json.load(fp) | 
					
						
						|  |  | 
					
						
						|  | config = data.get("config") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | precision = Precision.from_str(config.get("model_dtype")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | org_and_model = config.get("model_name", config.get("model_args", None)) | 
					
						
						|  | org_and_model = org_and_model.split("/", 1) | 
					
						
						|  |  | 
					
						
						|  | if len(org_and_model) == 1: | 
					
						
						|  | org = None | 
					
						
						|  | model = org_and_model[0] | 
					
						
						|  | result_key = f"{model}_{precision.value.name}" | 
					
						
						|  | else: | 
					
						
						|  | org = org_and_model[0] | 
					
						
						|  | model = org_and_model[1] | 
					
						
						|  | result_key = f"{org}_{model}_{precision.value.name}" | 
					
						
						|  | full_model = "/".join(org_and_model) | 
					
						
						|  |  | 
					
						
						|  | still_on_hub, _, model_config = is_model_on_hub( | 
					
						
						|  | full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False | 
					
						
						|  | ) | 
					
						
						|  | architecture = "?" | 
					
						
						|  | if model_config is not None: | 
					
						
						|  | architectures = getattr(model_config, "architectures", None) | 
					
						
						|  | if architectures: | 
					
						
						|  | architecture = ";".join(architectures) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | results = {} | 
					
						
						|  | for task in Tasks: | 
					
						
						|  | task = task.value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) | 
					
						
						|  | if accs.size == 0 or any([acc is None for acc in accs]): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | mean_acc = np.mean(accs) * 100.0 | 
					
						
						|  | results[task.benchmark] = mean_acc | 
					
						
						|  |  | 
					
						
						|  | return self( | 
					
						
						|  | eval_name=result_key, | 
					
						
						|  | full_model=full_model, | 
					
						
						|  | org=org, | 
					
						
						|  | model=model, | 
					
						
						|  | results=results, | 
					
						
						|  | precision=precision, | 
					
						
						|  | revision= config.get("model_sha", ""), | 
					
						
						|  | still_on_hub=still_on_hub, | 
					
						
						|  | architecture=architecture | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def update_with_request_file(self, requests_path): | 
					
						
						|  | """Finds the relevant request file for the current model and updates info with it""" | 
					
						
						|  | request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | with open(request_file, "r") as f: | 
					
						
						|  | request = json.load(f) | 
					
						
						|  | self.model_type = ModelType.from_str(request.get("model_type", "")) | 
					
						
						|  | self.weight_type = WeightType[request.get("weight_type", "Original")] | 
					
						
						|  | self.license = request.get("license", "?") | 
					
						
						|  | self.likes = request.get("likes", 0) | 
					
						
						|  | self.num_params = request.get("params", 0) | 
					
						
						|  | self.date = request.get("submitted_time", "") | 
					
						
						|  | except Exception: | 
					
						
						|  | print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") | 
					
						
						|  |  | 
					
						
						|  | def to_dict(self): | 
					
						
						|  | """Converts the Eval Result to a dict compatible with our dataframe display""" | 
					
						
						|  | average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) | 
					
						
						|  | data_dict = { | 
					
						
						|  | "eval_name": self.eval_name, | 
					
						
						|  | AutoEvalColumn.precision.name: self.precision.value.name, | 
					
						
						|  | AutoEvalColumn.model_type.name: self.model_type.value.name, | 
					
						
						|  | AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | 
					
						
						|  | AutoEvalColumn.weight_type.name: self.weight_type.value.name, | 
					
						
						|  | AutoEvalColumn.architecture.name: self.architecture, | 
					
						
						|  | AutoEvalColumn.model.name: make_clickable_model(self.full_model), | 
					
						
						|  | AutoEvalColumn.revision.name: self.revision, | 
					
						
						|  | AutoEvalColumn.average.name: average, | 
					
						
						|  | AutoEvalColumn.license.name: self.license, | 
					
						
						|  | AutoEvalColumn.likes.name: self.likes, | 
					
						
						|  | AutoEvalColumn.params.name: self.num_params, | 
					
						
						|  | AutoEvalColumn.still_on_hub.name: self.still_on_hub, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | for task in Tasks: | 
					
						
						|  | data_dict[task.value.col_name] = self.results[task.value.benchmark] | 
					
						
						|  |  | 
					
						
						|  | return data_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_request_file_for_model(requests_path, model_name, precision): | 
					
						
						|  | """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | 
					
						
						|  | request_files = os.path.join( | 
					
						
						|  | requests_path, | 
					
						
						|  | f"{model_name}_eval_request_*.json", | 
					
						
						|  | ) | 
					
						
						|  | request_files = glob.glob(request_files) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | request_file = "" | 
					
						
						|  | request_files = sorted(request_files, reverse=True) | 
					
						
						|  | for tmp_request_file in request_files: | 
					
						
						|  | with open(tmp_request_file, "r") as f: | 
					
						
						|  | req_content = json.load(f) | 
					
						
						|  | if ( | 
					
						
						|  | req_content["status"] in ["FINISHED"] | 
					
						
						|  | and req_content["precision"] == precision.split(".")[-1] | 
					
						
						|  | ): | 
					
						
						|  | request_file = tmp_request_file | 
					
						
						|  | return request_file | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: | 
					
						
						|  | """From the path of the results folder root, extract all needed info for results""" | 
					
						
						|  | model_result_filepaths = [] | 
					
						
						|  |  | 
					
						
						|  | for root, _, files in os.walk(results_path): | 
					
						
						|  |  | 
					
						
						|  | if len(files) == 0 or any([not f.endswith(".json") for f in files]): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | 
					
						
						|  | except dateutil.parser._parser.ParserError: | 
					
						
						|  | files = [files[-1]] | 
					
						
						|  |  | 
					
						
						|  | for file in files: | 
					
						
						|  | model_result_filepaths.append(os.path.join(root, file)) | 
					
						
						|  |  | 
					
						
						|  | eval_results = {} | 
					
						
						|  | for model_result_filepath in model_result_filepaths: | 
					
						
						|  |  | 
					
						
						|  | eval_result = EvalResult.init_from_json_file(model_result_filepath) | 
					
						
						|  | eval_result.update_with_request_file(requests_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eval_name = eval_result.eval_name | 
					
						
						|  | if eval_name in eval_results.keys(): | 
					
						
						|  | eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | 
					
						
						|  | else: | 
					
						
						|  | eval_results[eval_name] = eval_result | 
					
						
						|  |  | 
					
						
						|  | results = [] | 
					
						
						|  | for v in eval_results.values(): | 
					
						
						|  | try: | 
					
						
						|  | v.to_dict() | 
					
						
						|  | results.append(v) | 
					
						
						|  | except KeyError: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | return results | 
					
						
						|  |  |