Spaces:
Build error
Build error
Duplicate from leakyrelu/MobilenetV2SSDLite_LPRnet
Browse filesCo-authored-by: Carlos Sandoval <[email protected]>
- .gitattributes +27 -0
- 3.jpg +0 -0
- 4.jpg +0 -0
- README.md +14 -0
- app.py +92 -0
- detection.tflite +3 -0
- recognition.tflite +3 -0
- recognition2.tflite +3 -0
- requirements.txt +4 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
3.jpg
ADDED
![]() |
4.jpg
ADDED
![]() |
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Automatic Licence plate Recognition
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 2.9.4
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: leakyrelu/MobilenetV2SSDLite_LPRnet
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re, datetime,time, cv2, numpy as np, tensorflow as tf, sys
|
3 |
+
|
4 |
+
|
5 |
+
CHARS = "ABCDEFGHIJKLMNPQRSTUVWXYZ0123456789" # exclude I, O
|
6 |
+
CHARS_DICT = {char:i for i, char in enumerate(CHARS)}
|
7 |
+
DECODE_DICT = {i:char for i, char in enumerate(CHARS)}
|
8 |
+
|
9 |
+
interpreter = tf.lite.Interpreter(model_path='detection.tflite')
|
10 |
+
interpreter.allocate_tensors()
|
11 |
+
recog_interpreter = tf.lite.Interpreter(model_path='recognition2.tflite')
|
12 |
+
recog_input_details = recog_interpreter.get_input_details()
|
13 |
+
recog_output_details = recog_interpreter.get_output_details()
|
14 |
+
recog_interpreter.resize_tensor_input(recog_input_details[0]['index'], (1, 24, 94, 3))
|
15 |
+
recog_interpreter.allocate_tensors()
|
16 |
+
input_details = interpreter.get_input_details()
|
17 |
+
output_details = interpreter.get_output_details()
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details):
|
22 |
+
x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2]
|
23 |
+
save_frame = frame[
|
24 |
+
max( 0, int(y1*1079) ) : min( 1079, int(y2*1079) ),
|
25 |
+
max( 0, int(x1*1920) ) : min( 1920, int(x2*1920) )
|
26 |
+
]
|
27 |
+
|
28 |
+
# Execute text recognition
|
29 |
+
print(frame.shape)
|
30 |
+
test_image = cv2.resize(save_frame,(94,24))/256
|
31 |
+
test_image = np.expand_dims(test_image,axis=0)
|
32 |
+
test_image = test_image.astype(np.float32)
|
33 |
+
interpreter.set_tensor(input_details[0]['index'], test_image)
|
34 |
+
interpreter.invoke()
|
35 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
36 |
+
decoded = tf.keras.backend.ctc_decode(output_data,(24,),greedy=False)
|
37 |
+
text = ""
|
38 |
+
for i in np.array(decoded[0][0][0]):
|
39 |
+
if i >-1:
|
40 |
+
text += DECODE_DICT[i]
|
41 |
+
# Do nothing if text is empty
|
42 |
+
if not len(text): return
|
43 |
+
license_plate = text
|
44 |
+
text[:3].replace("0",'O')
|
45 |
+
|
46 |
+
return text,cv2.resize(save_frame,(94,24))
|
47 |
+
|
48 |
+
def greet(image):
|
49 |
+
resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_AREA)
|
50 |
+
input_data = resized.astype(np.float32) # Set as 3D RGB float array
|
51 |
+
input_data /= 255. # Normalize
|
52 |
+
input_data = np.expand_dims(input_data, axis=0) # Batch dimension (wrap in 4D)
|
53 |
+
|
54 |
+
# Initialize input tensor
|
55 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
56 |
+
interpreter.invoke()
|
57 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
58 |
+
|
59 |
+
# Bounding boxes
|
60 |
+
boxes = interpreter.get_tensor(output_details[1]['index'])
|
61 |
+
|
62 |
+
text = None
|
63 |
+
# For index and confidence value of the first class [0]
|
64 |
+
for i, confidence in enumerate(output_data[0]):
|
65 |
+
if confidence > .3:
|
66 |
+
text, crop = execute_text_recognition_tflite(
|
67 |
+
boxes[0][i], image,
|
68 |
+
recog_interpreter, recog_input_details, recog_output_details,
|
69 |
+
)
|
70 |
+
return text, crop
|
71 |
+
image = gr.inputs.Image(shape=(1920,1080))
|
72 |
+
output_image =gr.outputs.Image(type="auto", label="Output")
|
73 |
+
|
74 |
+
|
75 |
+
title = "Automatic licence plate detection and recognition"
|
76 |
+
description = "Gradio demo for an automatic licence plate recognition system. To use it, simply upload your image of a car with a licence plate, or click one of the examples to load them. Read more at the links below."
|
77 |
+
article = "<p style='text-align: center'><a href='https://ieeexplore.ieee.org/document/9071863'>Robust Real time Lightweight Automatic License plate Recognition System for Iranian License Plates</a> | <a href='https://github.com/clsandoval/LPRnet-keras'>Github Repo</a></p>"
|
78 |
+
|
79 |
+
|
80 |
+
iface = gr.Interface(
|
81 |
+
fn=greet,
|
82 |
+
inputs=image,
|
83 |
+
outputs=["text",output_image],
|
84 |
+
title = title,
|
85 |
+
description = description,
|
86 |
+
article=article,
|
87 |
+
examples = [
|
88 |
+
"3.jpg",
|
89 |
+
"4.jpg",
|
90 |
+
]
|
91 |
+
)
|
92 |
+
iface.launch()
|
detection.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a985cc86131fac5be60478f4c10be416dfe035445b70813d6441ced7d330018
|
3 |
+
size 11495036
|
recognition.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b080d01c1c84eaa207c8ca5834070bd76ce8d62fe6a4dce7c31d238462a07796
|
3 |
+
size 820132
|
recognition2.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e5552d69c86c8d596be83aad9dffdf9ee466a5932db2f37d07bbe37cab64e35
|
3 |
+
size 797248
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-contrib-python==4.5.4.58
|
2 |
+
opencv-python==4.5.5.62
|
3 |
+
opencv-python-headless==4.5.4.58
|
4 |
+
tensorflow==2.7.0
|