Atualli commited on
Commit
280cb6d
·
1 Parent(s): e6faa3a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -1
app.py CHANGED
@@ -17,7 +17,30 @@ recog_interpreter.allocate_tensors()
17
  input_details = interpreter.get_input_details()
18
  output_details = interpreter.get_output_details()
19
 
20
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details):
23
  x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2]
@@ -56,6 +79,9 @@ def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, o
56
  return text,cv2.resize(save_frame,(94,24))
57
 
58
  def greet(image):
 
 
 
59
  resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_LINEAR)
60
  input_data = resized.astype(np.float32) # Set as 3D RGB float array
61
  input_data /= 255. # Normalize
 
17
  input_details = interpreter.get_input_details()
18
  output_details = interpreter.get_output_details()
19
 
20
+
21
+ def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
22
+ """Return a sharpened version of the image, using an unsharp mask."""
23
+ blurred = cv2.GaussianBlur(image, kernel_size, sigma)
24
+ sharpened = float(amount + 1) * image - float(amount) * blurred
25
+ sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
26
+ sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
27
+ sharpened = sharpened.round().astype(np.uint8)
28
+ if threshold > 0:
29
+ low_contrast_mask = np.absolute(image - blurred) < threshold
30
+ np.copyto(sharpened, image, where=low_contrast_mask)
31
+ return sharpened
32
+
33
+ def increase_brightness(img, value):
34
+ hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
35
+ h, s, v = cv2.split(hsv)
36
+
37
+ lim = 255 - value
38
+ v[v > lim] = 255
39
+ v[v <= lim] += value
40
+
41
+ final_hsv = cv2.merge((h, s, v))
42
+ img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
43
+ return img
44
 
45
  def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details):
46
  x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2]
 
79
  return text,cv2.resize(save_frame,(94,24))
80
 
81
  def greet(image):
82
+ sharpened = unsharp_mask(image)
83
+ image = increase_brightness(sharpened, value=10) # 60 ->5qoOk.png #10 -> if8nC.png
84
+
85
  resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_LINEAR)
86
  input_data = resized.astype(np.float32) # Set as 3D RGB float array
87
  input_data /= 255. # Normalize