Spaces:
Running
Running
Synced repo using 'sync_with_huggingface' Github Action
Browse files
app.py
CHANGED
@@ -4,10 +4,11 @@ import random
|
|
4 |
from typing import Tuple, Dict
|
5 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
6 |
from langchain.chat_models import init_chat_model
|
7 |
-
from atla import Atla
|
8 |
from dotenv import load_dotenv
|
|
|
9 |
|
10 |
-
load_dotenv()
|
11 |
|
12 |
# Set page config
|
13 |
st.set_page_config(page_title="Meta-GPT", layout="wide")
|
@@ -15,45 +16,112 @@ st.set_page_config(page_title="Meta-GPT", layout="wide")
|
|
15 |
# Configuration parameters
|
16 |
QUALITY_THRESHOLD = 4.0 # Threshold for acceptable response quality
|
17 |
MAX_ITERATIONS = 3 # Maximum number of refinement iterations
|
18 |
-
EVAL_PROMPT = """
|
19 |
-
Evaluate the response on the following dimensions, scoring each from 1-5 (where 5 is excellent):
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
- A brief explanation justifying the score
|
29 |
- Specific suggestions for improvement
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Initialize API keys from environment variables or Streamlit secrets
|
37 |
def initialize_api_keys():
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
|
51 |
# Initialize models and session state
|
52 |
def initialize_app():
|
53 |
-
initialize_api_keys()
|
54 |
-
|
55 |
-
# Initialize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if "initialized" not in st.session_state:
|
|
|
|
|
|
|
|
|
57 |
try:
|
58 |
st.session_state.gpt4o = init_chat_model("gpt-4o", model_provider="openai")
|
59 |
st.session_state.claude = init_chat_model(
|
@@ -63,42 +131,76 @@ def initialize_app():
|
|
63 |
"deepseek-ai/DeepSeek-V3", model_provider="together"
|
64 |
)
|
65 |
st.session_state.atla = Atla()
|
|
|
66 |
st.session_state.initialized = True
|
67 |
|
68 |
-
# Initialize chat messages
|
69 |
-
if "chat_messages" not in st.session_state:
|
70 |
-
st.session_state.chat_messages = [
|
71 |
-
SystemMessage(
|
72 |
-
content="You are a helpful assistant that can answer questions and help with tasks."
|
73 |
-
)
|
74 |
-
]
|
75 |
-
|
76 |
-
# Initialize chat history for display
|
77 |
-
if "chat_history" not in st.session_state:
|
78 |
-
st.session_state.chat_history = []
|
79 |
-
|
80 |
-
# Initialize latest result
|
81 |
-
if "latest_result" not in st.session_state:
|
82 |
-
st.session_state.latest_result = None
|
83 |
-
|
84 |
except Exception as e:
|
85 |
st.error(f"Error initializing models: {e}")
|
86 |
-
st.warning("Please check your API keys in the
|
87 |
st.session_state.initialized = False
|
88 |
|
89 |
|
90 |
-
def
|
91 |
-
"""Evaluate
|
92 |
-
|
93 |
model_id="atla-selene",
|
94 |
-
model_input=
|
95 |
-
model_output=
|
96 |
-
evaluation_criteria=
|
97 |
)
|
98 |
-
evaluation =
|
99 |
return float(evaluation.score), evaluation.critique
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def get_responses(
|
103 |
question: str, feedback: str = "", with_status: bool = True
|
104 |
) -> Dict[str, str]:
|
@@ -154,13 +256,6 @@ def get_responses(
|
|
154 |
return responses
|
155 |
|
156 |
|
157 |
-
def evaluate_response(question: str, response: str) -> Dict:
|
158 |
-
"""Evaluate a single response using Selene."""
|
159 |
-
inputs = {"question": question, "response": response}
|
160 |
-
score, critique = evaluate_with_atla(inputs)
|
161 |
-
return {"score": score, "critique": critique}
|
162 |
-
|
163 |
-
|
164 |
def evaluate_all_responses(
|
165 |
question: str, responses: Dict[str, str], use_status: bool = True
|
166 |
) -> Dict[str, Dict]:
|
@@ -364,7 +459,7 @@ def display_evaluation_details():
|
|
364 |
disabled=True,
|
365 |
)
|
366 |
|
367 |
-
st.write("**Atla Critique:**")
|
368 |
st.write(refinement["evaluation"]["critique"])
|
369 |
|
370 |
# Model comparison
|
@@ -380,7 +475,7 @@ def display_evaluation_details():
|
|
380 |
disabled=True,
|
381 |
)
|
382 |
|
383 |
-
st.write("**Atla Critique:**")
|
384 |
st.write(eval_data["critique"])
|
385 |
|
386 |
|
|
|
4 |
from typing import Tuple, Dict
|
5 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
6 |
from langchain.chat_models import init_chat_model
|
7 |
+
from atla import Atla, AsyncAtla
|
8 |
from dotenv import load_dotenv
|
9 |
+
import asyncio
|
10 |
|
11 |
+
load_dotenv(dotenv_path="/.env")
|
12 |
|
13 |
# Set page config
|
14 |
st.set_page_config(page_title="Meta-GPT", layout="wide")
|
|
|
16 |
# Configuration parameters
|
17 |
QUALITY_THRESHOLD = 4.0 # Threshold for acceptable response quality
|
18 |
MAX_ITERATIONS = 3 # Maximum number of refinement iterations
|
|
|
|
|
19 |
|
20 |
+
# Split the evaluation prompt into separate dimensions
|
21 |
+
ACCURACY_PROMPT = """
|
22 |
+
Evaluate the response on Accuracy: Is the response factually correct and free from hallucination or misinformation?
|
23 |
+
|
24 |
+
Scoring Rubric:
|
25 |
+
Score 1: The response contains numerous factual errors or completely fabricated information.
|
26 |
+
Score 2: The response contains major factual errors or significant hallucinations.
|
27 |
+
Score 3: The response contains some factual inaccuracies, but they are not significant.
|
28 |
+
Score 4: The response is factually sound with only minor inaccuracies.
|
29 |
+
Score 5: The response is factually flawless and completely accurate.
|
30 |
+
|
31 |
+
Provide:
|
32 |
+
- A numeric score (1-5, where 5 is excellent)
|
33 |
+
- A brief explanation justifying the score
|
34 |
+
- Specific suggestions for improvement
|
35 |
+
"""
|
36 |
|
37 |
+
RELEVANCE_PROMPT = """
|
38 |
+
Evaluate the response on Relevance: Does the response directly answer the user's question effectively?
|
39 |
+
|
40 |
+
Scoring Rubric:
|
41 |
+
Score 1: The response completely misses the point of the question.
|
42 |
+
Score 2: The response addresses the general topic but fails to answer the specific question.
|
43 |
+
Score 3: The response partially answers the question but misses key aspects.
|
44 |
+
Score 4: The response answers the question well but could be more focused or complete.
|
45 |
+
Score 5: The response perfectly addresses all aspects of the question.
|
46 |
+
|
47 |
+
Provide:
|
48 |
+
- A numeric score (1-5, where 5 is excellent)
|
49 |
- A brief explanation justifying the score
|
50 |
- Specific suggestions for improvement
|
51 |
+
"""
|
52 |
|
53 |
+
CLARITY_PROMPT = """
|
54 |
+
Evaluate the response on Clarity: Is the response clearly structured and easily understandable?
|
55 |
+
|
56 |
+
Scoring Rubric:
|
57 |
+
Score 1: The response is extremely confusing and poorly structured.
|
58 |
+
Score 2: The response is difficult to follow with major organizational issues.
|
59 |
+
Score 3: The response is somewhat clear but has organizational or expression issues.
|
60 |
+
Score 4: The response is well-structured with only minor clarity issues.
|
61 |
+
Score 5: The response is exceptionally clear, well-organized, and easy to understand.
|
62 |
+
|
63 |
+
Provide:
|
64 |
+
- A numeric score (1-5, where 5 is excellent)
|
65 |
+
- A brief explanation justifying the score
|
66 |
+
- Specific suggestions for improvement
|
67 |
"""
|
68 |
|
69 |
+
DEPTH_PROMPT = """
|
70 |
+
Evaluate the response on Depth: Does the response provide sufficient detail, insight, or useful context?
|
71 |
+
|
72 |
+
Scoring Rubric:
|
73 |
+
Score 1: The response is extremely shallow with no meaningful detail or insight.
|
74 |
+
Score 2: The response lacks significant depth and provides minimal useful information.
|
75 |
+
Score 3: The response provides some depth but misses opportunities for insight or context.
|
76 |
+
Score 4: The response offers good depth with useful details and context.
|
77 |
+
Score 5: The response provides exceptional depth with comprehensive details, valuable insights, and rich context.
|
78 |
+
|
79 |
+
Provide:
|
80 |
+
- A numeric score (1-5, where 5 is excellent)
|
81 |
+
- A brief explanation justifying the score
|
82 |
+
- Specific suggestions for improvement
|
83 |
+
"""
|
84 |
|
85 |
# Initialize API keys from environment variables or Streamlit secrets
|
86 |
def initialize_api_keys():
|
87 |
+
# Load from .env file (already done via load_dotenv() at the top of your script)
|
88 |
+
# No need to check for Streamlit secrets if you're using .env exclusively
|
89 |
+
|
90 |
+
# Check if required keys are in environment variables
|
91 |
+
required_keys = ["OPENAI_API_KEY", "ANTHROPIC_API_KEY", "TOGETHER_API_KEY", "ATLA_API_KEY"]
|
92 |
+
missing_keys = [key for key in required_keys if not os.environ.get(key)]
|
93 |
+
|
94 |
+
if missing_keys:
|
95 |
+
st.sidebar.error(f"Missing API keys: {', '.join(missing_keys)}")
|
96 |
+
st.sidebar.info("Please add these keys to your .env file")
|
97 |
+
return False
|
98 |
+
|
99 |
+
return True
|
100 |
|
101 |
|
102 |
# Initialize models and session state
|
103 |
def initialize_app():
|
104 |
+
keys_loaded = initialize_api_keys()
|
105 |
+
|
106 |
+
# Initialize session state variables if they don't exist
|
107 |
+
if "chat_history" not in st.session_state:
|
108 |
+
st.session_state.chat_history = []
|
109 |
+
|
110 |
+
if "chat_messages" not in st.session_state:
|
111 |
+
st.session_state.chat_messages = [
|
112 |
+
SystemMessage(
|
113 |
+
content="You are a helpful assistant that can answer questions and help with tasks."
|
114 |
+
)
|
115 |
+
]
|
116 |
+
|
117 |
+
if "latest_result" not in st.session_state:
|
118 |
+
st.session_state.latest_result = None
|
119 |
+
|
120 |
if "initialized" not in st.session_state:
|
121 |
+
st.session_state.initialized = False
|
122 |
+
|
123 |
+
# Only initialize models if keys are loaded and not already initialized
|
124 |
+
if not st.session_state.initialized and keys_loaded:
|
125 |
try:
|
126 |
st.session_state.gpt4o = init_chat_model("gpt-4o", model_provider="openai")
|
127 |
st.session_state.claude = init_chat_model(
|
|
|
131 |
"deepseek-ai/DeepSeek-V3", model_provider="together"
|
132 |
)
|
133 |
st.session_state.atla = Atla()
|
134 |
+
st.session_state.async_atla = AsyncAtla()
|
135 |
st.session_state.initialized = True
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
except Exception as e:
|
138 |
st.error(f"Error initializing models: {e}")
|
139 |
+
st.warning("Please check your API keys in the .env file.")
|
140 |
st.session_state.initialized = False
|
141 |
|
142 |
|
143 |
+
async def evaluate_dimension(question: str, response: str, dimension_prompt: str) -> Tuple[float, str]:
|
144 |
+
"""Evaluate a single dimension using Atla's Selene model asynchronously."""
|
145 |
+
eval_response = await st.session_state.async_atla.evaluation.create(
|
146 |
model_id="atla-selene",
|
147 |
+
model_input=question,
|
148 |
+
model_output=response,
|
149 |
+
evaluation_criteria=dimension_prompt,
|
150 |
)
|
151 |
+
evaluation = eval_response.result.evaluation
|
152 |
return float(evaluation.score), evaluation.critique
|
153 |
|
154 |
|
155 |
+
async def evaluate_with_atla_async(inputs: dict[str, str]) -> Tuple[float, Dict[str, Dict]]:
|
156 |
+
"""Evaluate response using Atla's Selene model across all dimensions asynchronously."""
|
157 |
+
# Create tasks for all dimensions
|
158 |
+
accuracy_task = evaluate_dimension(inputs["question"], inputs["response"], ACCURACY_PROMPT)
|
159 |
+
relevance_task = evaluate_dimension(inputs["question"], inputs["response"], RELEVANCE_PROMPT)
|
160 |
+
clarity_task = evaluate_dimension(inputs["question"], inputs["response"], CLARITY_PROMPT)
|
161 |
+
depth_task = evaluate_dimension(inputs["question"], inputs["response"], DEPTH_PROMPT)
|
162 |
+
|
163 |
+
# Run all evaluations concurrently
|
164 |
+
accuracy_score, accuracy_critique = await accuracy_task
|
165 |
+
relevance_score, relevance_critique = await relevance_task
|
166 |
+
clarity_score, clarity_critique = await clarity_task
|
167 |
+
depth_score, depth_critique = await depth_task
|
168 |
+
|
169 |
+
# Calculate average score
|
170 |
+
avg_score = (accuracy_score + relevance_score + clarity_score + depth_score) / 4
|
171 |
+
|
172 |
+
# Compile detailed results
|
173 |
+
detailed_results = {
|
174 |
+
"accuracy": {"score": accuracy_score, "critique": accuracy_critique},
|
175 |
+
"relevance": {"score": relevance_score, "critique": relevance_critique},
|
176 |
+
"clarity": {"score": clarity_score, "critique": clarity_critique},
|
177 |
+
"depth": {"score": depth_score, "critique": depth_critique}
|
178 |
+
}
|
179 |
+
|
180 |
+
# Compile overall critique
|
181 |
+
overall_critique = f"""
|
182 |
+
Accuracy ({accuracy_score}/5): {accuracy_critique}
|
183 |
+
|
184 |
+
Relevance ({relevance_score}/5): {relevance_critique}
|
185 |
+
|
186 |
+
Clarity ({clarity_score}/5): {clarity_critique}
|
187 |
+
|
188 |
+
Depth ({depth_score}/5): {depth_critique}
|
189 |
+
|
190 |
+
**Overall Score: {avg_score:.2f}/5**
|
191 |
+
"""
|
192 |
+
|
193 |
+
return avg_score, overall_critique, detailed_results
|
194 |
+
|
195 |
+
|
196 |
+
def evaluate_response(question: str, response: str) -> Dict:
|
197 |
+
"""Evaluate a single response using Selene."""
|
198 |
+
inputs = {"question": question, "response": response}
|
199 |
+
# Use asyncio to run the async function
|
200 |
+
score, critique, detailed_results = asyncio.run(evaluate_with_atla_async(inputs))
|
201 |
+
return {"score": score, "critique": critique, "detailed_results": detailed_results}
|
202 |
+
|
203 |
+
|
204 |
def get_responses(
|
205 |
question: str, feedback: str = "", with_status: bool = True
|
206 |
) -> Dict[str, str]:
|
|
|
256 |
return responses
|
257 |
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
def evaluate_all_responses(
|
260 |
question: str, responses: Dict[str, str], use_status: bool = True
|
261 |
) -> Dict[str, Dict]:
|
|
|
459 |
disabled=True,
|
460 |
)
|
461 |
|
462 |
+
st.write("**Atla Critique's across different dimensions:**")
|
463 |
st.write(refinement["evaluation"]["critique"])
|
464 |
|
465 |
# Model comparison
|
|
|
475 |
disabled=True,
|
476 |
)
|
477 |
|
478 |
+
st.write("**Atla Critique's across different dimensions:**")
|
479 |
st.write(eval_data["critique"])
|
480 |
|
481 |
|