AstroSage / app.py
Tijmen2's picture
Update app.py
ca35e53 verified
raw
history blame
2.46 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random
# Initialize model
model_path = hf_hub_download(
repo_id="AstroMLab/AstroSage-8B-GGUF",
filename="AstroSage-8B-Q8_0.gguf"
)
llm = Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
chat_format="llama-3",
seed=42,
f16_kv=True,
logits_all=False,
use_mmap=True,
use_gpu=True
)
# Placeholder responses for when context is empty
GREETING_MESSAGES = [
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]
def get_random_greeting():
return random.choice(GREETING_MESSAGES)
# Function to handle the chat response with streaming
def respond_stream(message, history):
# Add the system message and previous chat history
system_message = "You are AstroSage, a highly knowledgeable AI assistant specialized in astronomy, astrophysics, and cosmology. Provide accurate, engaging, and educational responses about space science and the universe."
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
try:
# Stream response from LLM
stream = llm.create_chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
top_p=0.9,
stream=True # Enable streaming
)
# Stream the chunks of the response
response_content = ""
for chunk in stream:
response_content += chunk["choices"][0]["delta"]["content"]
yield response_content
except Exception as e:
yield f"Error: {e}"
# Using gr.ChatInterface for a simpler chat UI
chatbot = gr.ChatInterface(fn=respond_stream, type="messages")
# Set a welcome message
chatbot.set_welcome_message(get_random_greeting())
if __name__ == "__main__":
chatbot.launch()