Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from llama_cpp import Llama | |
| from huggingface_hub import hf_hub_download | |
| import random | |
| # Initialize model | |
| model_path = hf_hub_download( | |
| repo_id="AstroMLab/AstroSage-8B-GGUF", | |
| filename="AstroSage-8B-Q8_0.gguf" | |
| ) | |
| llm = Llama( | |
| model_path=model_path, | |
| n_ctx=2048, | |
| n_threads=4, | |
| chat_format="llama-3", | |
| seed=42, | |
| f16_kv=True, | |
| logits_all=False, | |
| use_mmap=True, | |
| use_gpu=True | |
| ) | |
| # Placeholder responses for when context is empty | |
| GREETING_MESSAGES = [ | |
| "Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", | |
| "Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", | |
| "AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", | |
| "The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", | |
| ] | |
| def get_random_greeting(): | |
| return random.choice(GREETING_MESSAGES) | |
| def respond_stream(message, history): | |
| if not message: # Handle empty messages | |
| return | |
| system_message = "You are AstroSage, a highly knowledgeable AI assistant..." # ... (your system message) | |
| messages = [{"role": "system", "content": system_message}] | |
| # Format history correctly (especially important if you use clear) | |
| for user, assistant in history: | |
| messages.append({"role": "user", "content": user}) | |
| if assistant: # Check if assistant message exists | |
| messages.append({"role": "assistant", "content": assistant}) | |
| messages.append({"role": "user", "content": message}) | |
| try: | |
| response_content = "" | |
| for chunk in llm.create_chat_completion( | |
| messages=messages, | |
| max_tokens=512, | |
| temperature=0.7, | |
| top_p=0.9, | |
| stream=True | |
| ): | |
| delta = chunk["choices"][0]["delta"] | |
| if "content" in delta: # check if content exists in delta | |
| response_content += delta["content"] | |
| yield response_content # yield inside the loop for streaming | |
| except Exception as e: | |
| yield f"Error during generation: {e}" | |
| # Display the welcome message as the first assistant message | |
| initial_message = random.choice(GREETING_MESSAGES) | |
| chatbot = gr.Chatbot(value=[[None, initial_message]]) # Set initial value here | |
| with gr.Blocks() as demo: | |
| chatbot.render() | |
| clear = gr.Button("Clear") | |
| clear.click(lambda: None, None, chatbot, fn=lambda: []) | |
| demo.queue().launch() |