File size: 2,516 Bytes
be1aa47
 
c94cc88
11d7701
c94cc88
11d7701
c94cc88
 
 
 
be1aa47
 
c94cc88
be1aa47
 
11d7701
be1aa47
 
 
 
 
 
 
11d7701
 
 
 
 
 
 
 
 
 
 
ca35e53
fe25716
 
 
 
be1aa47
fe25716
 
 
 
 
 
 
be1aa47
ca35e53
96edac1
fe25716
 
96edac1
ca35e53
 
 
fe25716
 
 
 
 
 
96edac1
fe25716
 
11d7701
6a2645a
 
 
be1aa47
fe25716
 
 
6a2645a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random

# Initialize model
model_path = hf_hub_download(
    repo_id="AstroMLab/AstroSage-8B-GGUF",
    filename="AstroSage-8B-Q8_0.gguf"
)

llm = Llama(
    model_path=model_path,
    n_ctx=2048,
    n_threads=4,
    chat_format="llama-3",
    seed=42,
    f16_kv=True,
    logits_all=False,
    use_mmap=True,
    use_gpu=True
)

# Placeholder responses for when context is empty
GREETING_MESSAGES = [
    "Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
    "Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
    "AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
    "The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]

def get_random_greeting():
    return random.choice(GREETING_MESSAGES)

def respond_stream(message, history):
    if not message:  # Handle empty messages
        return

    system_message = "You are AstroSage, a highly knowledgeable AI assistant..." # ... (your system message)
    messages = [{"role": "system", "content": system_message}]

    # Format history correctly (especially important if you use clear)
    for user, assistant in history:
        messages.append({"role": "user", "content": user})
        if assistant:  # Check if assistant message exists
            messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    try:
        response_content = ""
        for chunk in llm.create_chat_completion(
            messages=messages,
            max_tokens=512,
            temperature=0.7,
            top_p=0.9,
            stream=True
        ):
            delta = chunk["choices"][0]["delta"]
            if "content" in delta: # check if content exists in delta
                response_content += delta["content"]
                yield response_content # yield inside the loop for streaming
    except Exception as e:
        yield f"Error during generation: {e}"


# Display the welcome message as the first assistant message
initial_message = random.choice(GREETING_MESSAGES)
chatbot = gr.Chatbot(value=[[None, initial_message]])  # Set initial value here

with gr.Blocks() as demo:
    chatbot.render()
    clear = gr.Button("Clear")
    clear.click(lambda: None, None, chatbot, fn=lambda: []) 

    demo.queue().launch()