File size: 6,569 Bytes
8e164af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import requests
import subprocess
import json
import time
import spaces
import gradio as gr
import random
from typing import List, Optional, Tuple, Dict
# Constants for the llama.cpp server
API_PATH_HEALTH = "/health"
API_PATH_COMPLETIONS = "/chat/completions"
LLAMA_CPP_SERVER_BASE = "http://127.0.0.1:8080"
LLAMA_CPP_SERVER_START_TIMEOUT = 50 # seconds
MODEL_FILENAME = "AstroSage-8B-Q8_0.gguf"
HF_MODEL_ID = "AstroMLab/AstroSage-8B-GGUF"
# Ensure the model is available
if not os.path.exists(MODEL_FILENAME):
url = f"https://huggingface.co/{HF_MODEL_ID}/resolve/main/{MODEL_FILENAME}"
subprocess.check_call(["curl", "-o", MODEL_FILENAME, "-L", url])
if not os.path.exists("llama-server"):
subprocess.check_call("curl -o llama-server -L https://ngxson-llamacpp-builder.hf.space/llama-server", shell=True)
subprocess.check_call("chmod +x llama-server", shell=True)
# Roles and History Types
class Role:
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
History = List[Dict[str, str]] # Chat history with "role" and "content"
# Placeholder greeting messages
GREETING_MESSAGES = [
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]
# Helper functions
def wait_until_llamacpp_ready():
"""Wait until the llama.cpp server is ready."""
trials = 0
while trials < LLAMA_CPP_SERVER_START_TIMEOUT:
try:
response = requests.get(LLAMA_CPP_SERVER_BASE + API_PATH_HEALTH)
if response.status_code == 200:
return
except requests.exceptions.RequestException:
pass
time.sleep(1)
trials += 1
raise TimeoutError("llama.cpp server did not start in time.")
def initial_greeting() -> History:
"""Generate the initial greeting from the assistant."""
return [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}]
def send_request_to_llama(query: str, history: History) -> str:
"""Send a chat request to the llama.cpp server."""
messages = [{"role": Role.SYSTEM, "content": "You are AstroSage, an AI assistant specializing in astronomy, astrophysics, and cosmology."}]
messages.extend(history)
messages.append({"role": Role.USER, "content": query})
headers = {"Content-Type": "application/json"}
data = {"temperature": 0.7, "messages": messages, "stream": True}
response = requests.post(LLAMA_CPP_SERVER_BASE + API_PATH_COMPLETIONS, headers=headers, json=data, stream=True)
response.raise_for_status()
response_text = ""
for line in response.iter_lines():
line = line.decode("utf-8")
if line.startswith("data: ") and not line.endswith("[DONE]"):
data = json.loads(line[len("data: "):])
response_text += data["choices"][0]["delta"].get("content", "")
return response_text
@spaces.GPU
def bot(history: Optional[History]) -> History:
"""Generate the assistant's response."""
if history is None:
history = []
query = history[-1]["content"]
response = send_request_to_llama(query, history[:-1])
history.append({"role": "assistant", "content": response})
return history
# Custom CSS for a space theme
custom_css = """
#component-0 {
background-color: #1a1a2e;
border-radius: 15px;
padding: 20px;
}
.dark {
background-color: #0f0f1a;
}
.contain {
max-width: 1200px !important;
}
"""
# Launch llama.cpp server
llama_proc = subprocess.Popen([
"./llama-server"
], env=dict(
os.environ,
LLAMA_HOST="0.0.0.0",
LLAMA_PORT="8080",
LLAMA_ARG_CTX_SIZE=str(2048),
LLAMA_ARG_MODEL=MODEL_FILENAME,
LLAMA_ARG_N_GPU_LAYERS="9999",
))
try:
wait_until_llamacpp_ready()
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")) as demo:
gr.Markdown(
"""
# π AstroSage: Your Cosmic AI Companion
Welcome to AstroSage, an advanced AI assistant specializing in astronomy, astrophysics, and cosmology.
Powered by the AstroSage-Llama-3.1-8B model, I'm here to help you explore the wonders of the universe!
### What Can I Help You With?
- πͺ Explanations of astronomical phenomena
- π Space exploration and missions
- β Stars, galaxies, and cosmology
- π Planetary science and exoplanets
- π Astrophysics concepts and theories
- π Astronomical instruments and observations
Just type your question below and let's embark on a cosmic journey together!
"""
)
chatbot = gr.Chatbot(
label="Chat with AstroSage",
bubble_full_width=False,
show_label=True,
height=450,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Type your message here",
placeholder="Ask me anything about space and astronomy...",
scale=9
)
clear = gr.Button("Clear Chat", scale=1)
# Example questions for quick start
gr.Examples(
examples=[
"What is a black hole and how does it form?",
"Can you explain the life cycle of a star?",
"What are exoplanets and how do we detect them?",
"Tell me about the James Webb Space Telescope.",
"What is dark matter and why is it important?"
],
inputs=msg,
label="Example Questions"
)
# Set up the message chain
msg.submit(
lambda x, y: (x, y + [{"role": "user", "content": x}]),
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
chatbot,
chatbot
)
# Clear button functionality
clear.click(lambda: None, None, chatbot, queue=False)
# Initial greeting
demo.load(initial_greeting, None, chatbot, queue=False)
# Launch the app
demo.launch()
finally:
llama_proc.kill()
|