# 导出为 TFLite [TensorFlow Lite](https://www.tensorflow.org/lite/guide) 是一个轻量级框架,用于资源受限的设备上,如手机、嵌入式系统和物联网(IoT)设备,部署机器学习模型。TFLite 旨在在计算能力、内存和功耗有限的设备上优化和高效运行模型。模型以一种特殊的高效可移植格式表示,其文件扩展名为 `.tflite`。 🤗 Optimum 通过 `exporters.tflite` 模块提供将 🤗 Transformers 模型导出至 TFLite 格式的功能。请参考 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/tflite/overview) 以获取支持的模型架构列表。 要将模型导出为 TFLite 格式,请安装所需的依赖项: ```bash pip install optimum[exporters-tf] ``` 请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model) 以查看所有可用参数,或者在命令行中查看帮助: ```bash optimum-cli export tflite --help ``` 运行以下命令,以从 🤗 Hub 导出模型的检查点(checkpoint),以 `google-bert/bert-base-uncased` 为例: ```bash optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/ ``` 你应该能在日志中看到导出进度以及生成的 `model.tflite` 文件的保存位置,如下所示: ```bash Validating TFLite model... -[✓] TFLite model output names match reference model (logits) - Validating TFLite Model output "logits": -[✓] (1, 128, 30522) matches (1, 128, 30522) -[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05) The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05: - logits: max diff = 5.817413330078125e-05. The exported model was saved at: bert_tflite ``` 上面的示例说明了从 🤗 Hub 导出检查点的过程。导出本地模型时,首先需要确保将模型的权重和分词器文件保存在同一目录(`local_path`)中。在使用 CLI(命令行)时,将 `local_path` 传递给 `model` 参数,而不是 🤗 Hub 上的检查点名称。