# 使用 🤗 Tokenizers 中的分词器 [`PreTrainedTokenizerFast`] 依赖于 [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。 在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器: ```python >>> from tokenizers import Tokenizer >>> from tokenizers.models import BPE >>> from tokenizers.trainers import BpeTrainer >>> from tokenizers.pre_tokenizers import Whitespace >>> tokenizer = Tokenizer(BPE(unk_token="[UNK]")) >>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) >>> tokenizer.pre_tokenizer = Whitespace() >>> files = [...] >>> tokenizer.train(files, trainer) ``` 现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。 ## 直接从分词器对象加载 让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。[`PreTrainedTokenizerFast`] 类允许通过接受已实例化的 *tokenizer* 对象作为参数,进行轻松实例化: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) ``` 现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。 ## 从 JSON 文件加载 为了从 JSON 文件中加载分词器,让我们先保存我们的分词器: ```python >>> tokenizer.save("tokenizer.json") ``` 我们保存此文件的路径可以通过 `tokenizer_file` 参数传递给 [`PreTrainedTokenizerFast`] 初始化方法: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json") ``` 现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。