Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
from ..utils import is_torch_available | |
from ..utils.quantization_config import QuantizationConfigMixin | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
if is_torch_available(): | |
import torch | |
class HfQuantizer(ABC): | |
""" | |
Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. | |
This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method | |
yet. | |
Attributes | |
quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): | |
The quantization config that defines the quantization parameters of your model that you want to quantize. | |
modules_to_not_convert (`List[str]`, *optional*): | |
The list of module names to not convert when quantizing the model. | |
required_packages (`List[str]`, *optional*): | |
The list of required pip packages to install prior to using the quantizer | |
requires_calibration (`bool`): | |
Whether the quantization method requires to calibrate the model before using it. | |
requires_parameters_quantization (`bool`): | |
Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is | |
required to create a new xxxParameter in order to properly quantize the model. | |
""" | |
requires_calibration = False | |
required_packages = None | |
requires_parameters_quantization = False | |
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): | |
self.quantization_config = quantization_config | |
# -- Handle extra kwargs below -- | |
self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) | |
self.pre_quantized = kwargs.pop("pre_quantized", True) | |
if not self.pre_quantized and self.requires_calibration: | |
raise ValueError( | |
f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." | |
f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " | |
f"pass `pre_quantized=True` while knowing what you are doing." | |
) | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
""" | |
Some quantization methods require to explicitly set the dtype of the model to a | |
target dtype. You need to override this method in case you want to make sure that behavior is | |
preserved | |
Args: | |
torch_dtype (`torch.dtype`): | |
The input dtype that is passed in `from_pretrained` | |
""" | |
return torch_dtype | |
def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: | |
""" | |
Override this method if you want to pass a override the existing device map with a new | |
one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is | |
passed, the device_map is set to `"auto"`` | |
Args: | |
device_map (`Union[dict, str]`, *optional*): | |
The device_map that is passed through the `from_pretrained` method. | |
""" | |
return device_map | |
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
""" | |
Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` | |
to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` | |
to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. | |
Args: | |
torch_dtype (`torch.dtype`, *optional*): | |
The torch_dtype that is used to compute the device_map. | |
""" | |
return torch_dtype | |
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: | |
""" | |
Override this method if you want to adjust the `missing_keys`. | |
Args: | |
missing_keys (`List[str]`, *optional*): | |
The list of missing keys in the checkpoint compared to the state dict of the model | |
""" | |
return missing_keys | |
def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: | |
""" | |
returns dtypes for modules that are not quantized - used for the computation of the device_map in case | |
one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified | |
in `_process_model_before_weight_loading`. | |
Args: | |
model (`~transformers.PreTrainedModel`): | |
The model to quantize | |
torch_dtype (`torch.dtype`): | |
The dtype passed in `from_pretrained` method. | |
""" | |
return { | |
name: torch_dtype | |
for name, _ in model.named_parameters() | |
if any(m in name for m in self.modules_to_not_convert) | |
} | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
"""adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" | |
return max_memory | |
def check_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
) -> bool: | |
""" | |
checks if a loaded state_dict component is part of quantized param + some validation; only defined if | |
requires_parameters_quantization == True for quantization methods that require to create a new parameters | |
for quantization. | |
""" | |
return False | |
def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": | |
""" | |
takes needed components from state_dict and creates quantized param; only applicable if | |
requires_parameters_quantization == True | |
""" | |
if not self.requires_parameters_quantization: | |
raise AttributeError( | |
f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." | |
) | |
def validate_environment(self, *args, **kwargs): | |
""" | |
This method is used to potentially check for potential conflicts with arguments that are | |
passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. | |
If no explicit check are needed, simply return nothing. | |
""" | |
return | |
def preprocess_model(self, model: "PreTrainedModel", **kwargs): | |
""" | |
Setting model attributes and/or converting model before weights loading. At this point | |
the model should be initialized on the meta device so you can freely manipulate the skeleton | |
of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. | |
Args: | |
model (`~transformers.PreTrainedModel`): | |
The model to quantize | |
kwargs (`dict`, *optional*): | |
The keyword arguments that are passed along `_process_model_before_weight_loading`. | |
""" | |
model.is_quantized = True | |
model.quantization_method = self.quantization_config.quant_method | |
return self._process_model_before_weight_loading(model, **kwargs) | |
def postprocess_model(self, model: "PreTrainedModel", **kwargs): | |
""" | |
Post-process the model post weights loading. | |
Make sure to override the abstract method `_process_model_after_weight_loading`. | |
Args: | |
model (`~transformers.PreTrainedModel`): | |
The model to quantize | |
kwargs (`dict`, *optional*): | |
The keyword arguments that are passed along `_process_model_after_weight_loading`. | |
""" | |
return self._process_model_after_weight_loading(model, **kwargs) | |
def _process_model_before_weight_loading(self, model, **kwargs): | |
... | |
def _process_model_after_weight_loading(self, model, **kwargs): | |
... | |
def is_serializable(self): | |
... | |
def is_trainable(self): | |
... | |