Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from torch.utils.data import DataLoader | |
from ..utils import is_torch_xla_available | |
def tpu_spmd_dataloader(dataloader: DataLoader): | |
if is_torch_xla_available(): | |
import torch_xla.distributed.parallel_loader as pl | |
assert isinstance( | |
dataloader, pl.MpDeviceLoader | |
), "The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`." | |
# This is to support PyTorch/XLA FSDP via SPMD. | |
# Here we shard the input data's 0th dim across the fsdp axis. | |
import torch_xla.distributed.spmd as xs | |
sharding_spec = xs.ShardingSpec(xs.get_global_mesh(), ("fsdp", None)) | |
dataloader._parallel_loader_kwargs["input_sharding"] = sharding_spec | |
return dataloader | |
else: | |
return dataloader | |