Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from ..utils import is_torch_available | |
if is_torch_available(): | |
import torch | |
def replace_with_quanto_layers( | |
model, | |
quantization_config=None, | |
modules_to_not_convert=None, | |
current_key_name=None, | |
has_been_replaced=False, | |
): | |
""" | |
Public method that recursively replaces the Linear layers of the given model with Quanto quantized layers. | |
Returns the converted model and a boolean that indicates if the conversion has been successfull or not. | |
Args: | |
model (`torch.nn.Module`): | |
The model to convert, can be any `torch.nn.Module` instance. | |
quantization_config (`AqlmConfig`, defaults to `None`): | |
The quantization config object that contains the quantization parameters. | |
modules_to_not_convert (`list`, *optional*, defaults to `None`): | |
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be | |
converted. | |
current_key_name (`list`, *optional*, defaults to `None`): | |
A list that contains the current key name. This is used for recursion and should not be passed by the user. | |
has_been_replaced (`bool`, *optional*, defaults to `None`): | |
A boolean that indicates if the conversion has been successful or not. This is used for recursion and | |
should not be passed by the user. | |
""" | |
from accelerate import init_empty_weights | |
from quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8 | |
w_mapping = {"float8": qfloat8, "int8": qint8, "int4": qint4, "int2": qint2} | |
a_mapping = {None: None, "float8": qfloat8, "int8": qint8} | |
if modules_to_not_convert is None: | |
modules_to_not_convert = [] | |
for name, module in model.named_children(): | |
if current_key_name is None: | |
current_key_name = [] | |
current_key_name.append(name) | |
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): | |
with init_empty_weights(): | |
if isinstance(module, torch.nn.Linear): | |
model._modules[name] = QLinear( | |
in_features=module.in_features, | |
out_features=module.out_features, | |
bias=module.bias is not None, | |
dtype=module.weight.dtype, | |
weights=w_mapping[quantization_config.weights], | |
activations=a_mapping[quantization_config.activations], | |
) | |
model._modules[name].requires_grad_(False) | |
has_been_replaced = True | |
elif isinstance(module, torch.nn.LayerNorm): | |
if quantization_config.activations is not None: | |
model._modules[name] = QLayerNorm( | |
module.normalized_shape, | |
module.eps, | |
module.elementwise_affine, | |
module.bias is not None, | |
activations=a_mapping[quantization_config.activations], | |
) | |
has_been_replaced = True | |
if len(list(module.children())) > 0: | |
_, has_been_replaced = replace_with_quanto_layers( | |
module, | |
quantization_config=quantization_config, | |
modules_to_not_convert=modules_to_not_convert, | |
current_key_name=current_key_name, | |
has_been_replaced=has_been_replaced, | |
) | |
# Remove the last key for recursion | |
current_key_name.pop(-1) | |
return model, has_been_replaced | |