Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"AQLM (Additive Quantization of Language Model) integration file" | |
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available | |
if is_torch_available(): | |
import torch.nn as nn | |
def replace_with_aqlm_linear( | |
model, | |
quantization_config=None, | |
linear_weights_not_to_quantize=None, | |
current_key_name=None, | |
has_been_replaced=False, | |
): | |
""" | |
Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. | |
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the | |
conversion has been successfull or not. | |
Args: | |
model (`torch.nn.Module`): | |
The model to convert, can be any `torch.nn.Module` instance. | |
quantization_config (`AqlmConfig`): | |
The quantization config object that contains the quantization parameters. | |
linear_weights_not_to_quantize (`list[str]`, *optional*): | |
A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be | |
converted. | |
current_key_name (`list`, *optional*): | |
A list that contains the current key name. This is used for recursion and should not be passed by the user. | |
has_been_replaced (`bool`, *optional*): | |
A boolean that indicates if the conversion has been successful or not. This is used for recursion and | |
should not be passed by the user. | |
""" | |
if not is_aqlm_available(): | |
raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") | |
if not is_accelerate_available(): | |
raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`") | |
if linear_weights_not_to_quantize is None: | |
linear_weights_not_to_quantize = [] | |
from accelerate import init_empty_weights | |
from aqlm import QuantizedLinear | |
for name, module in model.named_children(): | |
if current_key_name is None: | |
current_key_name = [] | |
current_key_name.append(name) | |
if isinstance(module, nn.Linear): | |
# Check if the current key is not in the `linear_weights_not_to_quantize` | |
if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: | |
with init_empty_weights(): | |
in_features = module.in_features | |
out_features = module.out_features | |
model._modules[name] = QuantizedLinear( | |
in_features, | |
out_features, | |
bias=module.bias is not None, | |
in_group_size=quantization_config.in_group_size, | |
out_group_size=quantization_config.out_group_size, | |
num_codebooks=quantization_config.num_codebooks, | |
nbits_per_codebook=quantization_config.nbits_per_codebook, | |
) | |
has_been_replaced = True | |
# Store the module class in case we need to transpose the weight later | |
model._modules[name].source_cls = type(module) | |
# Force requires grad to False to avoid unexpected errors | |
model._modules[name].requires_grad_(False) | |
if len(list(module.children())) > 0: | |
_, has_been_replaced = replace_with_aqlm_linear( | |
module, | |
quantization_config=quantization_config, | |
linear_weights_not_to_quantize=linear_weights_not_to_quantize, | |
current_key_name=current_key_name, | |
has_been_replaced=has_been_replaced, | |
) | |
# Remove the last key for recursion | |
current_key_name.pop(-1) | |
return model, has_been_replaced | |