File size: 7,131 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
# Copyright 2020 The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io
import unittest
from dataclasses import dataclass
from typing import Optional

from transformers import AlbertForMaskedLM
from transformers.testing_utils import require_torch
from transformers.utils import ModelOutput, is_torch_available


if is_torch_available():
    import torch

    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2


@dataclass
class ModelOutputTest(ModelOutput):
    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputTester(unittest.TestCase):
    def test_get_attributes(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(x.a, 30)
        self.assertIsNone(x.b)
        self.assertIsNone(x.c)
        with self.assertRaises(AttributeError):
            _ = x.d

    def test_index_with_ints_and_slices(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

    def test_index_with_strings(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["b"], 10)
        with self.assertRaises(KeyError):
            _ = x["c"]

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["c"], 10)
        with self.assertRaises(KeyError):
            _ = x["b"]

    def test_dict_like_properties(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(list(x.values()), [30])
        self.assertEqual(list(x.items()), [("a", 30)])
        self.assertEqual(list(x), ["a"])

        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("b", 10)])
        self.assertEqual(list(x), ["a", "b"])

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(list(x.keys()), ["a", "c"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("c", 10)])
        self.assertEqual(list(x), ["a", "c"])

        with self.assertRaises(Exception):
            x = x.update({"d": 20})
        with self.assertRaises(Exception):
            del x["a"]
        with self.assertRaises(Exception):
            _ = x.pop("a")
        with self.assertRaises(Exception):
            _ = x.setdefault("d", 32)

    def test_set_attributes(self):
        x = ModelOutputTest(a=30)
        x.a = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)

    def test_set_keys(self):
        x = ModelOutputTest(a=30)
        x["a"] = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)

    def test_instantiate_from_dict(self):
        x = ModelOutputTest({"a": 30, "b": 10})
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)

    def test_instantiate_from_iterator(self):
        x = ModelOutputTest([("a", 30), ("b", 10)])
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)

        with self.assertRaises(ValueError):
            _ = ModelOutputTest([("a", 30), (10, 10)])

        x = ModelOutputTest(a=(30, 30))
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(x.a, (30, 30))

    @require_torch
    def test_torch_pytree(self):
        # ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves)
        # this is important for DistributedDataParallel gradient synchronization with static_graph=True
        import torch.utils._pytree as pytree

        x = ModelOutput({"a": 1.0, "c": 2.0})
        self.assertFalse(pytree._is_leaf(x))

        x = ModelOutputTest(a=1.0, c=2.0)
        self.assertFalse(pytree._is_leaf(x))

        expected_flat_outs = [1.0, 2.0]
        expected_tree_spec = pytree.TreeSpec(ModelOutputTest, ["a", "c"], [pytree.LeafSpec(), pytree.LeafSpec()])

        actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x)
        self.assertEqual(expected_flat_outs, actual_flat_outs)
        self.assertEqual(expected_tree_spec, actual_tree_spec)

        unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec)
        self.assertEqual(x, unflattened_x)

        if is_torch_greater_or_equal_than_2_2:
            self.assertEqual(
                pytree.treespec_dumps(actual_tree_spec),
                '[1, {"type": "tests.utils.test_model_output.ModelOutputTest", "context": "[\\"a\\", \\"c\\"]", "children_spec": [{"type": null, "context": null, "children_spec": []}, {"type": null, "context": null, "children_spec": []}]}]',
            )

    # TODO: @ydshieh
    @unittest.skip("CPU OOM")
    @require_torch
    def test_export_serialization(self):
        if not is_torch_greater_or_equal_than_2_2:
            return

        model_cls = AlbertForMaskedLM
        model_config = model_cls.config_class()
        model = model_cls(model_config)

        input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)}

        ep = torch.export.export(model, (), input_dict)

        buffer = io.BytesIO()
        torch.export.save(ep, buffer)
        buffer.seek(0)
        loaded_ep = torch.export.load(buffer)

        input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)}
        assert torch.allclose(model(**input_dict).logits, loaded_ep(**input_dict).logits)


class ModelOutputTestNoDataclass(ModelOutput):
    """Invalid test subclass of ModelOutput where @dataclass decorator is not used"""

    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputSubclassTester(unittest.TestCase):
    def test_direct_model_output(self):
        # Check that direct usage of ModelOutput instantiates without errors
        ModelOutput({"a": 1.1})

    def test_subclass_no_dataclass(self):
        # Check that a subclass of ModelOutput without @dataclass is invalid
        # A valid subclass is inherently tested other unit tests above.
        with self.assertRaises(TypeError):
            ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3)