File size: 11,987 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import pytest

from transformers import DetrConfig, MaskFormerConfig, ResNetBackbone, ResNetConfig, TimmBackbone
from transformers.testing_utils import require_torch, slow
from transformers.utils.backbone_utils import (
    BackboneMixin,
    get_aligned_output_features_output_indices,
    load_backbone,
    verify_out_features_out_indices,
)
from transformers.utils.import_utils import is_torch_available


if is_torch_available():
    import torch

    from transformers import BertPreTrainedModel


class BackboneUtilsTester(unittest.TestCase):
    def test_get_aligned_output_features_output_indices(self):
        stage_names = ["a", "b", "c"]

        # Defaults to last layer if both are None
        out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names)
        self.assertEqual(out_features, ["c"])
        self.assertEqual(out_indices, [2])

        # Out indices set to match out features
        out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names)
        self.assertEqual(out_features, ["a", "c"])
        self.assertEqual(out_indices, [0, 2])

        # Out features set to match out indices
        out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names)
        self.assertEqual(out_features, ["a", "c"])
        self.assertEqual(out_indices, [0, 2])

        # Out features selected from negative indices
        out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names)
        self.assertEqual(out_features, ["a", "c"])
        self.assertEqual(out_indices, [-3, -1])

    def test_verify_out_features_out_indices(self):
        # Stage names must be set
        with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"):
            verify_out_features_out_indices(["a", "b"], (0, 1), None)

        # Out features must be a list
        with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"):
            verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"])

        # Out features must be a subset of stage names
        with pytest.raises(
            ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]"
        ):
            verify_out_features_out_indices(["a", "b"], (0, 1), ["a"])

        # Out features must contain no duplicates
        with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"):
            verify_out_features_out_indices(["a", "a"], None, ["a"])

        # Out indices must be a list or tuple
        with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"):
            verify_out_features_out_indices(None, 0, ["a", "b"])

        # Out indices must be a subset of stage names
        with pytest.raises(
            ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)"
        ):
            verify_out_features_out_indices(None, (0, 1), ["a"])

        # Out indices must contain no duplicates
        with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"):
            verify_out_features_out_indices(None, (0, 0), ["a"])

        # Out features and out indices must be the same length
        with pytest.raises(
            ValueError, match="out_features and out_indices should have the same length if both are set"
        ):
            verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"])

        # Out features should match out indices
        with pytest.raises(
            ValueError, match="out_features and out_indices should correspond to the same stages if both are set"
        ):
            verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"])

        # Out features and out indices should be in order
        with pytest.raises(
            ValueError,
            match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]",
        ):
            verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"])

        with pytest.raises(
            ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)"
        ):
            verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"])

        # Check passes with valid inputs
        verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"])

    def test_backbone_mixin(self):
        backbone = BackboneMixin()

        backbone.stage_names = ["a", "b", "c"]
        backbone._out_features = ["a", "c"]
        backbone._out_indices = [0, 2]

        # Check that the output features and indices are set correctly
        self.assertEqual(backbone.out_features, ["a", "c"])
        self.assertEqual(backbone.out_indices, [0, 2])

        # Check out features and indices are updated correctly
        backbone.out_features = ["a", "b"]
        self.assertEqual(backbone.out_features, ["a", "b"])
        self.assertEqual(backbone.out_indices, [0, 1])

        backbone.out_indices = [-3, -1]
        self.assertEqual(backbone.out_features, ["a", "c"])
        self.assertEqual(backbone.out_indices, [-3, -1])

    @slow
    @require_torch
    def test_load_backbone_from_config(self):
        """
        Test that load_backbone correctly loads a backbone from a backbone config.
        """
        config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2)))
        backbone = load_backbone(config)
        self.assertEqual(backbone.out_features, ["stem", "stage2"])
        self.assertEqual(backbone.out_indices, (0, 2))
        self.assertIsInstance(backbone, ResNetBackbone)

    @slow
    @require_torch
    def test_load_backbone_from_checkpoint(self):
        """
        Test that load_backbone correctly loads a backbone from a checkpoint.
        """
        config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_config=None)
        backbone = load_backbone(config)
        self.assertEqual(backbone.out_indices, [4])
        self.assertEqual(backbone.out_features, ["stage4"])
        self.assertIsInstance(backbone, ResNetBackbone)

        config = MaskFormerConfig(
            backbone="resnet18",
            use_timm_backbone=True,
        )
        backbone = load_backbone(config)
        # We can't know ahead of time the exact output features and indices, or the layer names before
        # creating the timm model, so it defaults to the last layer (-1,) and has a different layer name
        self.assertEqual(backbone.out_indices, (-1,))
        self.assertEqual(backbone.out_features, ["layer4"])
        self.assertIsInstance(backbone, TimmBackbone)

    @slow
    @require_torch
    def test_load_backbone_backbone_kwargs(self):
        """
        Test that load_backbone correctly configures the loaded backbone with the provided kwargs.
        """
        config = MaskFormerConfig(backbone="resnet18", use_timm_backbone=True, backbone_kwargs={"out_indices": (0, 1)})
        backbone = load_backbone(config)
        self.assertEqual(backbone.out_indices, (0, 1))
        self.assertIsInstance(backbone, TimmBackbone)

        config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_kwargs={"out_indices": (0, 2)})
        backbone = load_backbone(config)
        self.assertEqual(backbone.out_indices, (0, 2))
        self.assertIsInstance(backbone, ResNetBackbone)

        # Check can't be passed with a backone config
        with pytest.raises(ValueError):
            config = MaskFormerConfig(
                backbone="microsoft/resnet-18",
                backbone_config=ResNetConfig(out_indices=(0, 2)),
                backbone_kwargs={"out_indices": (0, 1)},
            )

    @slow
    @require_torch
    def test_load_backbone_in_new_model(self):
        """
        Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded.
        """

        # Inherit from PreTrainedModel to ensure that the weights are initialized
        class NewModel(BertPreTrainedModel):
            def __init__(self, config):
                super().__init__(config)
                self.backbone = load_backbone(config)
                self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size)
                self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size)

        def get_equal_not_equal_weights(model_0, model_1):
            equal_weights = []
            not_equal_weights = []
            for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()):
                self.assertEqual(k0, k1)
                weights_are_equal = torch.allclose(v0, v1)
                if weights_are_equal:
                    equal_weights.append(k0)
                else:
                    not_equal_weights.append(k0)
            return equal_weights, not_equal_weights

        config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18")
        model_0 = NewModel(config)
        model_1 = NewModel(config)
        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)

        # Norm layers are always initialized with the same weights
        equal_weights = [w for w in equal_weights if "normalization" not in w]
        self.assertEqual(len(equal_weights), 0)
        self.assertEqual(len(not_equal_weights), 24)

        # Now we create a new model with backbone weights that are pretrained
        config.use_pretrained_backbone = True
        model_0 = NewModel(config)
        model_1 = NewModel(config)
        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)

        # Norm layers are always initialized with the same weights
        equal_weights = [w for w in equal_weights if "normalization" not in w]
        self.assertEqual(len(equal_weights), 20)
        # Linear layers are still initialized randomly
        self.assertEqual(len(not_equal_weights), 4)

        # Check loading in timm backbone
        config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True)
        model_0 = NewModel(config)
        model_1 = NewModel(config)
        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)

        # Norm layers are always initialized with the same weights
        equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w]
        self.assertEqual(len(equal_weights), 0)
        self.assertEqual(len(not_equal_weights), 24)

        # Now we create a new model with backbone weights that are pretrained
        config.use_pretrained_backbone = True
        model_0 = NewModel(config)
        model_1 = NewModel(config)
        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)

        # Norm layers are always initialized with the same weights
        equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w]
        self.assertEqual(len(equal_weights), 20)
        # Linear layers are still initialized randomly
        self.assertEqual(len(not_equal_weights), 4)