Spaces:
Runtime error
Runtime error
File size: 11,987 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import DetrConfig, MaskFormerConfig, ResNetBackbone, ResNetConfig, TimmBackbone
from transformers.testing_utils import require_torch, slow
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
load_backbone,
verify_out_features_out_indices,
)
from transformers.utils.import_utils import is_torch_available
if is_torch_available():
import torch
from transformers import BertPreTrainedModel
class BackboneUtilsTester(unittest.TestCase):
def test_get_aligned_output_features_output_indices(self):
stage_names = ["a", "b", "c"]
# Defaults to last layer if both are None
out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names)
self.assertEqual(out_features, ["c"])
self.assertEqual(out_indices, [2])
# Out indices set to match out features
out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [0, 2])
# Out features set to match out indices
out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [0, 2])
# Out features selected from negative indices
out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [-3, -1])
def test_verify_out_features_out_indices(self):
# Stage names must be set
with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"):
verify_out_features_out_indices(["a", "b"], (0, 1), None)
# Out features must be a list
with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"):
verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"])
# Out features must be a subset of stage names
with pytest.raises(
ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]"
):
verify_out_features_out_indices(["a", "b"], (0, 1), ["a"])
# Out features must contain no duplicates
with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"):
verify_out_features_out_indices(["a", "a"], None, ["a"])
# Out indices must be a list or tuple
with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"):
verify_out_features_out_indices(None, 0, ["a", "b"])
# Out indices must be a subset of stage names
with pytest.raises(
ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)"
):
verify_out_features_out_indices(None, (0, 1), ["a"])
# Out indices must contain no duplicates
with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"):
verify_out_features_out_indices(None, (0, 0), ["a"])
# Out features and out indices must be the same length
with pytest.raises(
ValueError, match="out_features and out_indices should have the same length if both are set"
):
verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"])
# Out features should match out indices
with pytest.raises(
ValueError, match="out_features and out_indices should correspond to the same stages if both are set"
):
verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"])
# Out features and out indices should be in order
with pytest.raises(
ValueError,
match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]",
):
verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"])
with pytest.raises(
ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)"
):
verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"])
# Check passes with valid inputs
verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"])
def test_backbone_mixin(self):
backbone = BackboneMixin()
backbone.stage_names = ["a", "b", "c"]
backbone._out_features = ["a", "c"]
backbone._out_indices = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features, ["a", "c"])
self.assertEqual(backbone.out_indices, [0, 2])
# Check out features and indices are updated correctly
backbone.out_features = ["a", "b"]
self.assertEqual(backbone.out_features, ["a", "b"])
self.assertEqual(backbone.out_indices, [0, 1])
backbone.out_indices = [-3, -1]
self.assertEqual(backbone.out_features, ["a", "c"])
self.assertEqual(backbone.out_indices, [-3, -1])
@slow
@require_torch
def test_load_backbone_from_config(self):
"""
Test that load_backbone correctly loads a backbone from a backbone config.
"""
config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2)))
backbone = load_backbone(config)
self.assertEqual(backbone.out_features, ["stem", "stage2"])
self.assertEqual(backbone.out_indices, (0, 2))
self.assertIsInstance(backbone, ResNetBackbone)
@slow
@require_torch
def test_load_backbone_from_checkpoint(self):
"""
Test that load_backbone correctly loads a backbone from a checkpoint.
"""
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_config=None)
backbone = load_backbone(config)
self.assertEqual(backbone.out_indices, [4])
self.assertEqual(backbone.out_features, ["stage4"])
self.assertIsInstance(backbone, ResNetBackbone)
config = MaskFormerConfig(
backbone="resnet18",
use_timm_backbone=True,
)
backbone = load_backbone(config)
# We can't know ahead of time the exact output features and indices, or the layer names before
# creating the timm model, so it defaults to the last layer (-1,) and has a different layer name
self.assertEqual(backbone.out_indices, (-1,))
self.assertEqual(backbone.out_features, ["layer4"])
self.assertIsInstance(backbone, TimmBackbone)
@slow
@require_torch
def test_load_backbone_backbone_kwargs(self):
"""
Test that load_backbone correctly configures the loaded backbone with the provided kwargs.
"""
config = MaskFormerConfig(backbone="resnet18", use_timm_backbone=True, backbone_kwargs={"out_indices": (0, 1)})
backbone = load_backbone(config)
self.assertEqual(backbone.out_indices, (0, 1))
self.assertIsInstance(backbone, TimmBackbone)
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_kwargs={"out_indices": (0, 2)})
backbone = load_backbone(config)
self.assertEqual(backbone.out_indices, (0, 2))
self.assertIsInstance(backbone, ResNetBackbone)
# Check can't be passed with a backone config
with pytest.raises(ValueError):
config = MaskFormerConfig(
backbone="microsoft/resnet-18",
backbone_config=ResNetConfig(out_indices=(0, 2)),
backbone_kwargs={"out_indices": (0, 1)},
)
@slow
@require_torch
def test_load_backbone_in_new_model(self):
"""
Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded.
"""
# Inherit from PreTrainedModel to ensure that the weights are initialized
class NewModel(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.backbone = load_backbone(config)
self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size)
self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size)
def get_equal_not_equal_weights(model_0, model_1):
equal_weights = []
not_equal_weights = []
for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()):
self.assertEqual(k0, k1)
weights_are_equal = torch.allclose(v0, v1)
if weights_are_equal:
equal_weights.append(k0)
else:
not_equal_weights.append(k0)
return equal_weights, not_equal_weights
config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18")
model_0 = NewModel(config)
model_1 = NewModel(config)
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)
# Norm layers are always initialized with the same weights
equal_weights = [w for w in equal_weights if "normalization" not in w]
self.assertEqual(len(equal_weights), 0)
self.assertEqual(len(not_equal_weights), 24)
# Now we create a new model with backbone weights that are pretrained
config.use_pretrained_backbone = True
model_0 = NewModel(config)
model_1 = NewModel(config)
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)
# Norm layers are always initialized with the same weights
equal_weights = [w for w in equal_weights if "normalization" not in w]
self.assertEqual(len(equal_weights), 20)
# Linear layers are still initialized randomly
self.assertEqual(len(not_equal_weights), 4)
# Check loading in timm backbone
config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True)
model_0 = NewModel(config)
model_1 = NewModel(config)
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)
# Norm layers are always initialized with the same weights
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w]
self.assertEqual(len(equal_weights), 0)
self.assertEqual(len(not_equal_weights), 24)
# Now we create a new model with backbone weights that are pretrained
config.use_pretrained_backbone = True
model_0 = NewModel(config)
model_1 = NewModel(config)
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1)
# Norm layers are always initialized with the same weights
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w]
self.assertEqual(len(equal_weights), 20)
# Linear layers are still initialized randomly
self.assertEqual(len(not_equal_weights), 4)
|