File size: 8,352 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding=utf-8
# Copyright 2020 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import (
    AutoModelForSeq2SeqLM,
    BertTokenizer,
    DataCollatorForSeq2Seq,
    EncoderDecoderModel,
    GenerationConfig,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    T5Tokenizer,
)
from transformers.testing_utils import TestCasePlus, require_sentencepiece, require_torch, slow
from transformers.utils import is_datasets_available


if is_datasets_available():
    import datasets


@require_sentencepiece
class Seq2seqTrainerTester(TestCasePlus):
    @slow
    @require_torch
    def test_finetune_bert2bert(self):
        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
        bert2bert.config.max_length = 128

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all(len(x) == 512 for x in inputs.input_ids)
            assert all(len(x) == 128 for x in outputs.input_ids)

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            accuracy = sum([int(pred_str[i] == label_str[i]) for i in range(len(pred_str))]) / len(pred_str)

            return {"accuracy": accuracy}

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
            eval_strategy="steps",
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            tokenizer=tokenizer,
        )

        # start training
        trainer.train()

    @slow
    @require_torch
    def test_return_sequences(self):
        # Tests that the number of generated sequences is correct when num_return_sequences > 1
        # and essentially ensuring that `accelerator.gather()` is used instead of `gather_for_metrics`
        INPUT_COLUMN = "question"
        TARGET_COLUMN = "answer"
        MAX_INPUT_LENGTH = 256
        MAX_TARGET_LENGTH = 256

        dataset = datasets.load_dataset("gsm8k", "main", split="train[:38]")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small")
        tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
        data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest")
        gen_config = GenerationConfig.from_pretrained(
            "google-t5/t5-small", max_length=None, min_length=None, max_new_tokens=256, min_new_tokens=1, num_beams=5
        )

        training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True)

        trainer = Seq2SeqTrainer(
            model=model,
            args=training_args,
            tokenizer=tokenizer,
            data_collator=data_collator,
            compute_metrics=lambda x: {"samples": x[0].shape[0]},
        )

        def prepare_data(examples):
            # Remove pairs where at least one record is none
            inputs = examples[INPUT_COLUMN]
            targets = examples[TARGET_COLUMN]

            model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, truncation=True)
            labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, truncation=True)
            model_inputs["labels"] = labels["input_ids"]

            return model_inputs

        prepared_dataset = dataset.map(prepare_data, batched=True, remove_columns=[INPUT_COLUMN, TARGET_COLUMN])
        dataset_len = len(prepared_dataset)  # 38

        for num_return_sequences in range(3, 0, -1):
            gen_config.num_return_sequences = num_return_sequences
            metrics = trainer.evaluate(eval_dataset=prepared_dataset, generation_config=gen_config)
            assert (
                metrics["eval_samples"] == dataset_len * num_return_sequences
            ), f"Got {metrics['eval_samples']}, expected: {dataset_len * num_return_sequences}"

    @require_torch
    def test_bad_generation_config_fail_early(self):
        # Tests that a bad geneartion config causes the trainer to fail early
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small")
        tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
        data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest")
        gen_config = GenerationConfig(do_sample=False, top_p=0.9)  # bad: top_p is not compatible with do_sample=False

        training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True, generation_config=gen_config)
        with self.assertRaises(ValueError) as exc:
            _ = Seq2SeqTrainer(
                model=model,
                args=training_args,
                tokenizer=tokenizer,
                data_collator=data_collator,
                compute_metrics=lambda x: {"samples": x[0].shape[0]},
            )
        self.assertIn("The loaded generation config instance is invalid", str(exc.exception))