File size: 17,137 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import pytest

from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
from transformers.testing_utils import (
    is_torch_available,
    require_accelerate,
    require_auto_gptq,
    require_optimum,
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)


if is_torch_available():
    import torch


class GPTQConfigTest(unittest.TestCase):
    def test_bits(self):
        with self.assertRaises(ValueError):
            GPTQConfig(bits="")
            GPTQConfig(bits=1)
        GPTQConfig(bits=2)
        GPTQConfig(bits=4)

    def test_dataset(self):
        with self.assertRaises(ValueError):
            GPTQConfig(bits=2, dataset="auto_gpt")
        GPTQConfig(bits=2, dataset="c4")
        GPTQConfig(bits=2, dataset="ptb-new")

    def test_damp_percent(self):
        with self.assertRaises(ValueError):
            GPTQConfig(bits=2, damp_percent=10)
            GPTQConfig(bits=2, damp_percent=-1)
            GPTQConfig(bits=2, damp_percent="0")
        GPTQConfig(bits=2, damp_percent=0.01)

    def test_to_dict(self):
        quantization_config = GPTQConfig(bits=2)
        quantization_config.to_dict()

    def test_from_dict(self):
        dict = {"bits": 2}
        quantization_config = GPTQConfig.from_dict(dict)
        self.assertEqual(dict["bits"], quantization_config.bits)

    @require_optimum
    def test_optimum_config(self):
        from optimum.gptq import GPTQQuantizer

        config = GPTQConfig(bits=2)
        optimum_config = GPTQQuantizer.from_dict(config.to_dict_optimum())
        self.assertEqual(optimum_config.bits, config.bits)
        new_config = GPTQConfig.from_dict_optimum(optimum_config.to_dict())
        self.assertEqual(optimum_config.bits, new_config.bits)


@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
class GPTQTest(unittest.TestCase):
    model_name = "bigscience/bloom-560m"

    input_text = "Hello my name is"

    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
    EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I")
    EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of")
    EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
    EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
    EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")

    # this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings
    EXPECTED_RELATIVE_DIFFERENCE = 1.664253062

    bits = 4
    group_size = 128
    desc_act = False
    use_exllama = False

    dataset = [
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    ]

    device_map = None

    # called only once for all test in this class
    @classmethod
    def setUpClass(cls):
        """
        Setup quantized model
        """
        cls.model_fp16 = AutoModelForCausalLM.from_pretrained(
            cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map
        )
        cls.mem_fp16 = cls.model_fp16.get_memory_footprint()

        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)

        quantization_config = GPTQConfig(
            bits=cls.bits,
            dataset=cls.dataset,
            tokenizer=cls.tokenizer,
            group_size=cls.group_size,
            desc_act=cls.desc_act,
            use_exllama=cls.use_exllama,
        )

        cls.quantized_model = AutoModelForCausalLM.from_pretrained(
            cls.model_name,
            torch_dtype=torch.float16,
            device_map=cls.device_map,
            quantization_config=quantization_config,
        )

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model
        """

        mem_quantized = self.quantized_model.get_memory_footprint()

        self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE)

    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after quantization will throw an error.
        Checks also if other models are casted correctly.
        """
        # This should work
        if self.device_map is None:
            _ = self.quantized_model.to(0)

        with self.assertRaises(ValueError):
            # Tries with a `dtype``
            self.quantized_model.to(torch.float16)

    def test_original_dtype(self):
        r"""
        A simple test to check if the model succesfully stores the original dtype
        """
        self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype"))
        self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
        self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16)

    def test_quantized_layers_class(self):
        """
        Simple test to check if the model conversion has been done correctly by checking on
        the class type of the linear layers of the converted models
        """
        from auto_gptq.utils.import_utils import dynamically_import_QuantLinear

        QuantLinear = dynamically_import_QuantLinear(
            use_triton=False,
            desc_act=self.desc_act,
            group_size=self.group_size,
            bits=self.bits,
            disable_exllama=not self.use_exllama,
            disable_exllamav2=True,
        )
        self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear)

    def check_inference_correctness(self, model):
        r"""
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """
        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Check the exactness of the results
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Get the generation
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)

    def check_quantized_layers_type(self, model, value):
        self.assertTrue(model.transformer.h[0].mlp.dense_4h_to_h.QUANT_TYPE == value)

    def test_generate_quality(self):
        """
        Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
        """
        if self.device_map is None:
            self.check_inference_correctness(self.quantized_model.to(0))
        else:
            self.check_inference_correctness(self.quantized_model)

    def test_serialization(self):
        """
        Test the serialization of the model and the loading of the quantized weights works
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)
            if not self.use_exllama:
                quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
                    tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4)
                ).to(0)
                self.check_quantized_layers_type(quantized_model_from_saved, "cuda-old")
            else:
                # we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
                quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map={"": 0})
                self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
            self.check_inference_correctness(quantized_model_from_saved)

    @require_accelerate
    def test_serialization_big_model_inference(self):
        """
        Test the serialization of the model and the loading of the quantized weights with big model inference
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)
            quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto")
            self.check_inference_correctness(quantized_model_from_saved)

    def test_change_loading_attributes(self):
        """
        Test the serialization of the model and the loading of the quantized weights works with another config file
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)
            if not self.use_exllama:
                self.check_quantized_layers_type(self.quantized_model, "cuda-old")
                # we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
                quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
                    tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map={"": 0}
                )
                self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits)
                self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
                self.check_inference_correctness(quantized_model_from_saved)


@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMap(GPTQTest):
    device_map = "auto"


@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapExllama(GPTQTest):
    device_map = "auto"
    use_exllama = True


@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestActOrderExllama(unittest.TestCase):
    """
    Test GPTQ model with exllama kernel and desc_act=True (also known as act-order).
    More information on those arguments here:
    https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
    """

    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
    # 4bit + act_order + 128g
    model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
    input_text = "Hello, how are you ?"

    @classmethod
    def setUpClass(cls):
        """
        Setup quantized model
        """
        cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028)
        cls.quantized_model = AutoModelForCausalLM.from_pretrained(
            cls.model_name,
            torch_dtype=torch.float16,
            device_map={"": 0},
            quantization_config=cls.quantization_config,
        )
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)

    def check_inference_correctness(self, model):
        """
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """

        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Check the exactness of the results
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Get the generation
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)

    def test_quantized_layers_type(self):
        self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllama")

    def test_generate_quality(self):
        """
        Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
        """
        self.check_inference_correctness(self.quantized_model)

    def test_max_input_length(self):
        """
        Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
        """

        prompt = "I am in Paris and" * 1000
        inp = self.tokenizer(prompt, return_tensors="pt").to(0)
        self.assertTrue(inp["input_ids"].shape[1] > 4028)
        with self.assertRaises(RuntimeError) as cm:
            self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
            self.assertTrue("temp_state buffer is too small" in str(cm.exception))

        prompt = "I am in Paris and"
        inp = self.tokenizer(prompt, return_tensors="pt").to(0)
        self.assertTrue(inp["input_ids"].shape[1] < 4028)
        self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)


@slow
@require_optimum
@require_auto_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestExllamaV2(unittest.TestCase):
    """
    Test GPTQ model with exllamav2 kernel and desc_act=True (also known as act-order).
    More information on those arguments here:
    https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
    """

    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
    # 4bit + act_order + 128g
    model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
    input_text = "Hello, how are you ?"

    @classmethod
    def setUpClass(cls):
        """
        Setup quantized model
        """
        cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2})
        cls.quantized_model = AutoModelForCausalLM.from_pretrained(
            cls.model_name,
            torch_dtype=torch.float16,
            device_map={"": 0},
            quantization_config=cls.quantization_config,
        )
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)

    def test_quantized_layers_type(self):
        self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllamav2")

    def check_inference_correctness(self, model):
        """
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """

        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Check the exactness of the results
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Get the generation
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)

    def test_generate_quality(self):
        """
        Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
        """
        self.check_inference_correctness(self.quantized_model)


# fail when run all together
@pytest.mark.skip
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapCPUOffload(GPTQTest):
    device_map = {
        "transformer.word_embeddings": 0,
        "transformer.word_embeddings_layernorm": 0,
        "lm_head": 0,
        "transformer.h.0": 0,
        "transformer.h.1": 0,
        "transformer.h.2": 0,
        "transformer.h.3": 0,
        "transformer.h.4": 0,
        "transformer.h.5": 0,
        "transformer.h.6": 0,
        "transformer.h.7": 0,
        "transformer.h.8": 0,
        "transformer.h.9": 0,
        "transformer.h.10": 1,
        "transformer.h.11": 1,
        "transformer.h.12": 1,
        "transformer.h.13": 1,
        "transformer.h.14": 1,
        "transformer.h.15": 1,
        "transformer.h.16": 1,
        "transformer.h.17": 0,
        "transformer.h.18": "cpu",
        "transformer.h.19": "cpu",
        "transformer.h.20": "cpu",
        "transformer.h.21": "cpu",
        "transformer.h.22": "cpu",
        "transformer.h.23": 1,
        "transformer.ln_f": 0,
    }