File size: 10,374 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

from transformers import AutoTokenizer, is_torch_available
from transformers.testing_utils import require_torch, torch_device

from ..test_modeling_common import ids_tensor


if is_torch_available():
    import torch

    from transformers.generation import (
        EosTokenCriteria,
        MaxLengthCriteria,
        MaxNewTokensCriteria,
        MaxTimeCriteria,
        StoppingCriteriaList,
        StopStringCriteria,
        validate_stopping_criteria,
    )


@require_torch
class StoppingCriteriaTestCase(unittest.TestCase):
    def _get_tensors(self, length):
        batch_size = 3
        vocab_size = 250

        input_ids = ids_tensor((batch_size, length), vocab_size)
        scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
        return input_ids, scores

    def test_list_criteria(self):
        input_ids, scores = self._get_tensors(5)

        criteria = StoppingCriteriaList(
            [
                MaxLengthCriteria(max_length=10),
                MaxTimeCriteria(max_time=0.1),
            ]
        )

        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(9)
        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(10)
        self.assertTrue(all(criteria(input_ids, scores)))

    def test_max_length_criteria(self):
        criteria = MaxLengthCriteria(max_length=10)

        input_ids, scores = self._get_tensors(5)
        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(9)
        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(10)
        self.assertTrue(all(criteria(input_ids, scores)))

    def test_max_new_tokens_criteria(self):
        criteria = MaxNewTokensCriteria(start_length=5, max_new_tokens=5)

        input_ids, scores = self._get_tensors(5)
        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(9)
        self.assertFalse(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(10)
        self.assertTrue(all(criteria(input_ids, scores)))

        criteria_list = StoppingCriteriaList([criteria])
        self.assertEqual(criteria_list.max_length, 10)

    def test_max_time_criteria(self):
        input_ids, scores = self._get_tensors(5)

        criteria = MaxTimeCriteria(max_time=0.1)
        self.assertFalse(all(criteria(input_ids, scores)))

        criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2)
        self.assertTrue(all(criteria(input_ids, scores)))

    def test_eos_token_criteria(self):
        criteria = EosTokenCriteria(eos_token_id=0)

        input_ids, scores = self._get_tensors(5)
        input_ids[:, -1] = 0
        self.assertTrue(all(criteria(input_ids, scores)))

        input_ids, scores = self._get_tensors(5)
        input_ids[:2, -1] = 0
        input_ids[2, -1] = 1
        self.assertListEqual(criteria(input_ids, scores).tolist(), [True, True, False])

        input_ids, scores = self._get_tensors(5)
        input_ids[:, -1] = 1
        self.assertListEqual(criteria(input_ids, scores).tolist(), [False, False, False])

    def test_validate_stopping_criteria(self):
        validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10)

        with self.assertWarns(UserWarning):
            validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11)

        stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11)

        self.assertEqual(len(stopping_criteria), 1)

    def test_stop_string_criteria(self):
        true_strings = [
            "<|im_start|><|im_end|>",
            "<|im_start|><|im_end|<|im_end|>",
            ">><|im_start|>>stop",
            "stop",
            "e nd",
        ]
        false_strings = [
            "<|im_start|><|im_end|",
            "<|im_start|><|im_end|<|im_end|",
            "<|im_end|><|im_start|>",
            "<|im_end|<>stop<|im_end|",
            "end",
            "en d",
            "eNd",
            "<|im_end|",
            "|im_end|>",
            "s",
        ]
        stop_strings = ["<|im_end|>", "stop", "e nd"]

        # Use a tokenizer that won't actually have special tokens for these
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.pad_token_id = tokenizer.eos_token_id
        tokenizer.padding_side = "left"
        true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
        false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)

        scores = None
        criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
        for i in range(len(true_strings)):
            self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores))
        for i in range(len(false_strings)):
            self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores))

        # Now try it with a tokenizer where those are actually special tokens
        tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.5-mixtral-8x7b")
        tokenizer.padding_side = "left"
        true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
        false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)

        criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
        for i in range(len(true_strings)):
            self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores))
        for i in range(len(false_strings)):
            self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores))

    def test_stop_string_matching_positions(self):
        stop_string = "stop"
        token_list = ["last", "top", "topper", "s", "p"]
        token_indices = list(range(len(token_list)))
        all_token_valid_positions, all_token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions(
            token_list=token_list, token_indices=token_indices, stop_strings=[stop_string]
        )
        valid_positions = {
            token_list[idx]: positions for idx, positions in all_token_valid_positions[stop_string].items()
        }
        end_overlaps = {token_list[idx]: overlaps for idx, overlaps in all_token_end_overlaps[stop_string].items()}
        self.assertEqual(valid_positions, {"s": [3], "last": [2]})
        self.assertEqual(end_overlaps, {"top": [3], "topper": [3], "p": [1]})

    def test_stop_string_embedding_vecs(self):
        stop_string = "stop"
        token_list = ["last", "top", "topper", "s", "p"]
        token_indices = list(range(len(token_list)))
        embedding_vec, max_valid_positions, max_valid_end_lens = StopStringCriteria._stop_string_create_embedding_vec(
            token_list=token_list, token_indices=token_indices, stop_strings=[stop_string]
        )

        # Positions inside the stop string where the token matches (excluding end overlaps)
        valid_positions = embedding_vec[:, 0].tolist()
        self.assertEqual(valid_positions, [2, -1, -1, 3, -1])

        # Overlap lengths between end of stop string and start of token
        end_overlaps = embedding_vec[:, 1].tolist()
        self.assertEqual(end_overlaps, [-1, 3, 3, -1, 1])

        # Length of each token
        token_lengths = embedding_vec[:, 2].tolist()
        self.assertEqual(token_lengths, [len(token) for token in token_list])

    def test_criterias_per_row(self):
        text = "They completed the challenging puzzle, revealing the hidden image at the end"
        stop_strings = ["end"]

        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.pad_token_id = tokenizer.eos_token_id
        inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False)

        scores = None
        criteria = StoppingCriteriaList(
            [
                MaxLengthCriteria(max_length=20),
                StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings),
            ]
        )

        # trigger stopping when at leat one criteria is satisfied, one value per batch
        self.assertTrue(criteria(inputs["input_ids"], scores))

        # return False when neither is satisfied
        self.assertFalse(criteria(inputs["input_ids"][:, :-1], scores))

    def test_criterias_per_row_batched(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden image at the end",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["end"]

        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.pad_token_id = tokenizer.eos_token_id
        tokenizer.padding_side = "left"
        inputs = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False)

        scores = None
        criteria = StoppingCriteriaList(
            [
                MaxLengthCriteria(max_length=20),
                StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings),
            ]
        )

        # trigger stopping when at leat one criteria is satisfied
        self.assertListEqual(criteria(inputs["input_ids"], scores).tolist(), [True, False, False])

        # False when neither is satisfied
        self.assertListEqual(criteria(inputs["input_ids"][:, :-1], scores).tolist(), [False, False, False])