Spaces:
Runtime error
Runtime error
File size: 13,751 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import unittest
from copy import deepcopy
from functools import partial
from parameterized import parameterized
import tests.trainer.test_trainer
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
from transformers import is_torch_available
from transformers.testing_utils import (
TestCasePlus,
backend_device_count,
execute_subprocess_async,
mockenv_context,
require_accelerate,
require_fsdp,
require_torch_accelerator,
require_torch_multi_accelerator,
slow,
torch_device,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import FSDPOption, set_seed
from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device
if is_torch_available():
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1
from transformers.trainer import FSDP_MODEL_NAME
else:
is_torch_greater_or_equal_than_2_1 = False
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
dtypes = ["fp16"]
if is_torch_bf16_available_on_device(torch_device):
dtypes += ["bf16"]
sharding_strategies = ["full_shard", "shard_grad_op"]
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"]
set_seed(42)
params = list(itertools.product(sharding_strategies, dtypes))
def get_master_port(real_launcher=False):
"""
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
the issue is that once the port is tied it can't be used anywhere else outside of this process,
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
able to run both emulated launcher and normal launcher tests we need 2 distinct ports.
This function will give the right port in the right context. For real launcher it'll give the
base port, for emulated launcher it'll give the base port + 1. In both cases a string is
returned.
Args:
`real_launcher`: whether a real launcher is going to be used, or the emulated one
"""
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
if not real_launcher:
master_port_base = str(int(master_port_base) + 1)
return master_port_base
if is_torch_available():
from tests.trainer.test_trainer import ( # noqa
RegressionModelConfig,
RegressionPreTrainedModel,
)
# hack to restore original logging level pre #21700
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")
require_fsdp_version = require_fsdp
if is_accelerate_available():
from accelerate.utils.constants import (
FSDP_PYTORCH_VERSION,
FSDP_SHARDING_STRATEGY,
)
require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION)
def get_launcher(distributed=False, use_accelerate=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
master_port = get_master_port(real_launcher=True)
if use_accelerate:
return f"""accelerate launch
--num_processes {num_gpus}
--main_process_port {master_port}
--use_fsdp
--fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP
--fsdp_state_dict_type SHARDED_STATE_DICT
--fsdp_transformer_layer_cls_to_wrap BertLayer""".split()
return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split()
def _parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
@require_accelerate
@require_torch_accelerator
@require_fsdp_version
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon):
def setUp(self):
super().setUp()
master_port = get_master_port(real_launcher=False)
self.dist_env_1_gpu = {
"MASTER_ADDR": "localhost",
"MASTER_PORT": master_port,
"RANK": "0",
"LOCAL_RANK": "0",
"WORLD_SIZE": "1",
}
self.fsdp_config = {
"backward_prefetch": "backward_pre",
"forward_prefetch": "False",
"limit_all_gathers": "False",
"use_orig_params": "True",
"sync_module_states": "True",
"cpu_ram_efficient_loading": "True",
"activation_checkpointing": "False",
"min_num_params": 1,
}
def tearDown(self):
super().tearDown()
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
def test_fsdp_config(self, sharding_strategy, dtype):
output_dir = self.get_auto_remove_tmp_dir()
kwargs = {
"output_dir": output_dir,
"train_len": 128,
"save_steps": 5,
"learning_rate": 0.1,
"fsdp": f"{sharding_strategy} offload auto_wrap",
"fsdp_config": self.fsdp_config,
}
kwargs[dtype] = True
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(**kwargs)
self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
for k, v in trainer.args.fsdp_config.items():
self.assertEqual(v, self.fsdp_config[k])
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype):
output_dir = self.get_auto_remove_tmp_dir()
fsdp_config = deepcopy(self.fsdp_config)
del fsdp_config["min_num_params"]
fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer"
kwargs = {
"output_dir": output_dir,
"train_len": 128,
"save_steps": 5,
"learning_rate": 0.1,
"fsdp": f"{sharding_strategy} offload auto_wrap",
"fsdp_config": fsdp_config,
}
kwargs[dtype] = True
prefix = "FSDP_"
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(**kwargs)
self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
fsdp_sharding_strategy = (
str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1)
if is_accelerate_available("0.26.0")
else sharding_strategy.upper()
)
self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy)
self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true")
self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP")
self.assertEqual(
os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"])
)
self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper())
self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"])
self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"])
self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"])
self.assertEqual(
os.environ[f"{prefix}CPU_RAM_EFFICIENT_LOADING"], fsdp_config["cpu_ram_efficient_loading"]
)
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
@require_torch_multi_accelerator
@slow
def test_basic_run(self, sharding_strategy, dtype):
launcher = get_launcher(distributed=True, use_accelerate=False)
output_dir = self.get_auto_remove_tmp_dir()
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"]
fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
cmd = launcher + script + args + fsdp_args
execute_subprocess_async(cmd, env=self.get_env())
@parameterized.expand(dtypes)
@require_torch_multi_accelerator
@slow
@unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.")
def test_basic_run_with_cpu_offload(self, dtype):
launcher = get_launcher(distributed=True, use_accelerate=False)
output_dir = self.get_auto_remove_tmp_dir()
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"]
fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
cmd = launcher + script + args + fsdp_args
execute_subprocess_async(cmd, env=self.get_env())
@parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func)
@require_torch_multi_accelerator
@slow
def test_training_and_can_resume_normally(self, state_dict_type):
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
sharding_strategy = "full_shard"
use_accelerate = state_dict_type == "SHARDED_STATE_DICT"
launcher = get_launcher(True, use_accelerate=use_accelerate)
args = self.get_base_args(output_dir, 2, 25).split()
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir)
# resume from ckpt
checkpoint = os.path.join(output_dir, "checkpoint-115")
resume_args = args + f"--resume_from_checkpoint {checkpoint}".split()
is_fsdp_ckpt = os.path.isdir(checkpoint) and (
# this checks the FSDP state dict when `SHARDED_STATE_DICT` is used
any(
FSDP_MODEL_NAME in folder_name
for folder_name in os.listdir(checkpoint)
if os.path.isdir(os.path.join(checkpoint, folder_name))
)
# this checks the FSDP state dict when `FULL_STATE_DICT` is used
or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin"))
)
self.assertTrue(is_fsdp_ckpt)
logs_resume = self.run_cmd_and_get_logs(
use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir
)
for log, log1 in zip(logs, logs_resume):
if "learning_rate" in log:
self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5)
def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir):
if not use_accelerate:
fsdp_args = [
"--fsdp",
f"{sharding_strategy} auto_wrap",
"--fsdp_transformer_layer_cls_to_wrap",
"BertLayer",
]
cmd = launcher + script + args + fsdp_args
else:
fsdp_config = f"""
--fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1}
""".split()
cmd = launcher + fsdp_config + script + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
return logs
def get_base_args(self, output_dir, num_epochs, logging_steps):
return f"""
--model_name_or_path google-bert/bert-base-cased
--task_name mrpc
--output_dir {output_dir}
--overwrite_output_dir
--do_train
--max_seq_length 128
--per_device_train_batch_size 16
--learning_rate 5e-5
--num_train_epochs {num_epochs}
--lr_scheduler_type cosine
--logging_steps {logging_steps}
--save_strategy epoch
--do_eval
--eval_strategy epoch
--report_to none
"""
|