Spaces:
Runtime error
Runtime error
File size: 19,794 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
<!--
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ このファイルはMarkdownですが、Hugging Faceのdoc-builder(MDXに類似)向けの特定の構文を含んでいるため、
Markdownビューアでは正しく表示されないことに注意してください。
-->
# Benchmarks
<Tip warning={true}>
Hugging Faceのベンチマークツールは非推奨であり、Transformerモデルの速度とメモリの複雑さを測定するために外部のベンチマークライブラリを使用することをお勧めします。
</Tip>
[[open-in-colab]]
🤗 Transformersモデルをベンチマークし、ベストプラクティス、すでに利用可能なベンチマークについて見てみましょう。
🤗 Transformersモデルをベンチマークする方法について詳しく説明したノートブックは[こちら](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb)で利用できます。
## How to benchmark 🤗 Transformers models
[`PyTorchBenchmark`]クラスと[`TensorFlowBenchmark`]クラスを使用すると、🤗 Transformersモデルを柔軟にベンチマークできます。
ベンチマーククラスを使用すると、_ピークメモリ使用量_ および _必要な時間_ を _推論_ および _トレーニング_ の両方について測定できます。
<Tip>
ここでの _推論_ は、単一のフォワードパスによって定義され、 _トレーニング_ は単一のフォワードパスと
バックワードパスによって定義されます。
</Tip>
ベンチマーククラス[`PyTorchBenchmark`]と[`TensorFlowBenchmark`]は、それぞれのベンチマーククラスに対する適切な設定を含む [`PyTorchBenchmarkArguments`] および [`TensorFlowBenchmarkArguments`] タイプのオブジェクトを必要とします。
[`PyTorchBenchmarkArguments`] および [`TensorFlowBenchmarkArguments`] はデータクラスであり、それぞれのベンチマーククラスに対するすべての関連する設定を含んでいます。
次の例では、タイプ _bert-base-cased_ のBERTモデルをベンチマークする方法が示されています。
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(
... models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> benchmark = TensorFlowBenchmark(args)
```
</tf>
</frameworkcontent>
ここでは、ベンチマーク引数のデータクラスに対して、`models`、`batch_sizes`
および`sequence_lengths`の3つの引数が指定されています。引数`models`は必須で、
[モデルハブ](https://huggingface.co/models)からのモデル識別子の`リスト`を期待し
ます。`batch_sizes`と`sequence_lengths`の2つの`リスト`引数は
モデルのベンチマーク対象となる`input_ids`のサイズを定義します。
ベンチマーク引数データクラスを介して設定できる他の多くのパラメータがあります。これらの詳細については、直接ファイル
`src/transformers/benchmark/benchmark_args_utils.py`、
`src/transformers/benchmark/benchmark_args.py`(PyTorch用)、および`src/transformers/benchmark/benchmark_args_tf.py`(Tensorflow用)
を参照するか、次のシェルコマンドをルートから実行すると、PyTorchとTensorflowのそれぞれに対して設定可能なすべてのパラメータの記述的なリストが表示されます。
<frameworkcontent>
<pt>
```bash
python examples/pytorch/benchmarking/run_benchmark.py --help
```
インスタンス化されたベンチマークオブジェクトは、単に `benchmark.run()` を呼び出すことで実行できます。
```py
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.006
google-bert/bert-base-uncased 8 32 0.006
google-bert/bert-base-uncased 8 128 0.018
google-bert/bert-base-uncased 8 512 0.088
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1227
google-bert/bert-base-uncased 8 32 1281
google-bert/bert-base-uncased 8 128 1307
google-bert/bert-base-uncased 8 512 1539
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 08:58:43.371351
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</pt>
<tf>
```bash
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
```
インスタンス化されたベンチマークオブジェクトは、単に `benchmark.run()` を呼び出すことで実行できます。
```py
>>> results = benchmark.run()
>>> print(results)
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.005
google-bert/bert-base-uncased 8 32 0.008
google-bert/bert-base-uncased 8 128 0.022
google-bert/bert-base-uncased 8 512 0.105
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1330
google-bert/bert-base-uncased 8 32 1330
google-bert/bert-base-uncased 8 128 1330
google-bert/bert-base-uncased 8 512 1770
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:26:35.617317
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
デフォルトでは、_推論時間_ と _必要なメモリ_ がベンチマークされます。
上記の例の出力では、最初の2つのセクションが _推論時間_ と _推論メモリ_
に対応する結果を示しています。さらに、計算環境に関するすべての関連情報、
例えば GPU タイプ、システム、ライブラリのバージョンなどが、_ENVIRONMENT INFORMATION_ の下に表示されます。この情報は、[`PyTorchBenchmarkArguments`]
および [`TensorFlowBenchmarkArguments`] に引数 `save_to_csv=True`
を追加することで、オプションで _.csv_ ファイルに保存することができます。この場合、各セクションは別々の _.csv_ ファイルに保存されます。_.csv_
ファイルへのパスは、データクラスの引数を使用してオプションで定義できます。
モデル識別子、例えば `google-bert/bert-base-uncased` を使用して事前学習済みモデルをベンチマークする代わりに、利用可能な任意のモデルクラスの任意の設定をベンチマークすることもできます。この場合、ベンチマーク引数と共に設定の `list` を挿入する必要があります。
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
>>> args = PyTorchBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 128 0.006
bert-base 8 512 0.006
bert-base 8 128 0.018
bert-base 8 512 0.088
bert-384-hid 8 8 0.006
bert-384-hid 8 32 0.006
bert-384-hid 8 128 0.011
bert-384-hid 8 512 0.054
bert-6-lay 8 8 0.003
bert-6-lay 8 32 0.004
bert-6-lay 8 128 0.009
bert-6-lay 8 512 0.044
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1277
bert-base 8 32 1281
bert-base 8 128 1307
bert-base 8 512 1539
bert-384-hid 8 8 1005
bert-384-hid 8 32 1027
bert-384-hid 8 128 1035
bert-384-hid 8 512 1255
bert-6-lay 8 8 1097
bert-6-lay 8 32 1101
bert-6-lay 8 128 1127
bert-6-lay 8 512 1359
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:35:25.143267
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 8 0.005
bert-base 8 32 0.008
bert-base 8 128 0.022
bert-base 8 512 0.106
bert-384-hid 8 8 0.005
bert-384-hid 8 32 0.007
bert-384-hid 8 128 0.018
bert-384-hid 8 512 0.064
bert-6-lay 8 8 0.002
bert-6-lay 8 32 0.003
bert-6-lay 8 128 0.0011
bert-6-lay 8 512 0.074
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1330
bert-base 8 32 1330
bert-base 8 128 1330
bert-base 8 512 1770
bert-384-hid 8 8 1330
bert-384-hid 8 32 1330
bert-384-hid 8 128 1330
bert-384-hid 8 512 1540
bert-6-lay 8 8 1330
bert-6-lay 8 32 1330
bert-6-lay 8 128 1330
bert-6-lay 8 512 1540
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:38:15.487125
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
カスタマイズされたBertModelクラスの構成に対する推論時間と必要なメモリのベンチマーク
この機能は、モデルをトレーニングする際にどの構成を選択すべきかを決定する際に特に役立つことがあります。
## Benchmark best practices
このセクションでは、モデルをベンチマークする際に注意すべきいくつかのベストプラクティスをリストアップしています。
- 現在、単一デバイスのベンチマークしかサポートされていません。GPUでベンチマークを実行する場合、コードを実行するデバイスをユーザーが指定することを推奨します。
これはシェルで`CUDA_VISIBLE_DEVICES`環境変数を設定することで行えます。例:`export CUDA_VISIBLE_DEVICES=0`を実行してからコードを実行します。
- `no_multi_processing`オプションは、テストおよびデバッグ用にのみ`True`に設定すべきです。正確なメモリ計測を確保するために、各メモリベンチマークを別々のプロセスで実行することをお勧めします。これにより、`no_multi_processing`が`True`に設定されます。
- モデルのベンチマーク結果を共有する際には、常に環境情報を記述するべきです。異なるGPUデバイス、ライブラリバージョンなどでベンチマーク結果が大きく異なる可能性があるため、ベンチマーク結果単体ではコミュニティにとってあまり有用ではありません。
## Sharing your benchmark
以前、すべての利用可能なコアモデル(当時10モデル)に対して、多くの異なる設定で推論時間のベンチマークが行われました:PyTorchを使用し、TorchScriptの有無、TensorFlowを使用し、XLAの有無などです。これらのテストはすべてCPUで行われました(TensorFlow XLAを除く)。
このアプローチの詳細については、[次のブログポスト](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2)に詳しく説明されており、結果は[こちら](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing)で利用できます。
新しいベンチマークツールを使用すると、コミュニティとベンチマーク結果を共有することがこれまで以上に簡単になります。
- [PyTorchベンチマーク結果](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md)。
- [TensorFlowベンチマーク結果](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md)。
|