File size: 2,419 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import time

import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

def load_model_and_tokenizer():
    model_name = "NousResearch/Hermes-2-Theta-Llama-3-8B"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    special_tokens = {"pad_token": "<PAD>"}
    tokenizer.add_special_tokens(special_tokens)
    config = AutoConfig.from_pretrained(model_name)
    setattr(
        config,
        "quantizer_path",
        f"codebooks/Hermes-2-Theta-Llama-3-8B_1bit.xmad",
    )
    setattr(config, "window_length", 32)
    model = AutoModelForCausalLM.from_pretrained(
        model_name, config=config, torch_dtype=torch.float16, device_map="cuda:2"
    )
    if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
        print(
            "WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
        )
        model.resize_token_embeddings(len(tokenizer))
    model.config.pad_token_id = tokenizer.pad_token_id
    return model, tokenizer

model, tokenizer = load_model_and_tokenizer()

def process_dialog(message, history):
    dialog = [{"role": "user", "content": message}]
    prompt = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
    tokenized_input_prompt_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)

    with torch.no_grad():
        token_ids_for_each_answer = model.generate(
            tokenized_input_prompt_ids,
            max_new_tokens=512,
            temperature=0.7,
            do_sample=True,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id,
        )
    
    response = token_ids_for_each_answer[0][tokenized_input_prompt_ids.shape[-1]:]
    cleaned_response = tokenizer.decode(
        response,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
    
    return cleaned_response

def chatbot_response(message, history):
    response = process_dialog(message, history)
    return response

demo = gr.ChatInterface(
    fn=chatbot_response,
    examples=["Hello", "How are you?", "Tell me a joke"],
    title="LLM Chatbot",
    description="A demo chatbot using a quantized LLaMA model.",
)

if __name__ == "__main__":
    demo.launch()