File size: 4,245 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import platform
import sys
import time

import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# device = "cuda"

has_gpu = torch.cuda.is_available()
device = "cuda" if has_gpu else "cpu"

print(f"Python Platform: {platform.platform()}")
print(f"Python Version: {sys.version}")
print(f"PyTorch Version: {torch.__version__}")
print("GPU Availability:", "Available" if has_gpu else "Not Available")
print(f"Target Device: {device}")

if has_gpu:
    print(f"GPU Type: {torch.cuda.get_device_name(0)}")
    print(f"CUDA Version: {torch.version.cuda}")
else:
    print("CUDA is not available.")


def get_gpu_memory():
    return torch.cuda.memory_allocated() / 1024 / 1024  # Convert to MiB


class TorchTracemalloc:
    def __init__(self):
        self.begin = 0
        self.peak = 0

    def __enter__(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.synchronize()
        self.begin = get_gpu_memory()
        return self

    def __exit__(self, *exc):
        torch.cuda.synchronize()
        self.peak = torch.cuda.max_memory_allocated() / 1024 / 1024

    def consumed(self):
        return self.peak - self.begin


def load_model_and_tokenizer():
    model_name = "NousResearch/Meta-Llama-3-8B-Instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    special_tokens = {"pad_token": "<PAD>"}
    tokenizer.add_special_tokens(special_tokens)
    config = AutoConfig.from_pretrained(model_name)
    setattr(
        config, "quantizer_path", "codebooks/llama-3-8b-instruct_1bit.xmad"
    )
    setattr(config, "window_length", 32)
    model = AutoModelForCausalLM.from_pretrained(
        model_name, config=config, torch_dtype=torch.float16
    ).to(device)
    if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
        print(
            "WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
        )
        model.resize_token_embeddings(len(tokenizer))
    tokenizer.padding_side = "left"
    model.config.pad_token_id = tokenizer.pad_token_id

    return model, tokenizer


model, tokenizer = load_model_and_tokenizer()


def process_dialog(message, history):
    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>"),
    ]

    dialog = [
        {"role": "user" if i % 2 == 0 else "assistant", "content": msg}
        for i, (msg, _) in enumerate(history)
    ]
    dialog.append({"role": "user", "content": message})

    prompt = tokenizer.apply_chat_template(
        dialog, tokenize=False, add_generation_prompt=True
    )
    tokenized_input_prompt_ids = tokenizer(
        prompt, return_tensors="pt"
    ).input_ids.to(model.device)

    start_time = time.time()

    with TorchTracemalloc() as tracemalloc:
        with torch.no_grad():
            output = model.generate(
                tokenized_input_prompt_ids,
                # max_new_tokens=512,
                temperature=0.4,
                do_sample=True,
                eos_token_id=terminators,
                pad_token_id=tokenizer.pad_token_id,
            )

    end_time = time.time()

    response = output[0][tokenized_input_prompt_ids.shape[-1] :]
    cleaned_response = tokenizer.decode(
        response,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )

    generation_time = end_time - start_time
    gpu_memory = tracemalloc.consumed()

    return cleaned_response, generation_time, gpu_memory

def chatbot_response(message, history):
    response, generation_time, gpu_memory = process_dialog(message, history)
    metrics = f"\n\n**Answer Generation Time:** {generation_time:.2f}sec\n**GPU Memory Consumption:** {gpu_memory:.2f}MiB\n\n---\n\n"
    return response + metrics


demo = gr.ChatInterface(
    fn=chatbot_response,
    examples=["Hello", "How are you?", "Tell me a joke"],
    title="Chat with xMAD's: 1-bit-Llama-3-8B-Instruct Model (size: 33 MB)",
    description="Contact [email protected] to set up a demo",
)

if __name__ == "__main__":
    demo.launch(share=True)