File size: 8,821 Bytes
94bc625 dd4d0db 94bc625 961921f 94bc625 0c975eb 94bc625 0c975eb 94bc625 961921f e9be03d 94bc625 e9be03d 94bc625 0c975eb 94bc625 0c975eb 94bc625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import torch
from PIL import Image
import numpy as np
import cv2
import random
import gradio as gr
from gradio.themes import Soft
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
from transformers import AutoTokenizer, CLIPTextModel, CLIPFeatureExtractor
from transformers import DPTForDepthEstimation, DPTImageProcessor
stable_diffusion_base = "runwayml/stable-diffusion-v1-5"
finetune_controlnet_path = "controlnet"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
pipeline = None
depth_estimator_model = None
depth_estimator_processor = None
def load_depth_estimator():
global depth_estimator_model, depth_estimator_processor
if depth_estimator_model is None:
model_name = "Intel/dpt-hybrid-midas"
depth_estimator_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_estimator_processor = DPTImageProcessor.from_pretrained(model_name)
depth_estimator_model.to(DEVICE)
depth_estimator_model.eval()
return depth_estimator_model, depth_estimator_processor
def load_diffusion_pipeline():
global pipeline
if pipeline is None:
try:
if not os.path.exists(finetune_controlnet_path):
raise FileNotFoundError(f"ControlNet model not found: {finetune_controlnet_path}")
# 1. Load individual components of the base Stable Diffusion pipeline from Hugging Face Hub
vae = AutoencoderKL.from_pretrained(stable_diffusion_base, subfolder="vae", torch_dtype=DTYPE)
tokenizer = AutoTokenizer.from_pretrained(stable_diffusion_base, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_base, subfolder="text_encoder", torch_dtype=DTYPE)
unet = UNet2DConditionModel.from_pretrained(stable_diffusion_base, subfolder="unet", torch_dtype=DTYPE)
scheduler = DDPMScheduler.from_pretrained(stable_diffusion_base, subfolder="scheduler")
feature_extractor = CLIPFeatureExtractor.from_pretrained(stable_diffusion_base, subfolder="feature_extractor")
controlnet = ControlNetModel.from_pretrained(finetune_controlnet_path, torch_dtype=DTYPE)
pipeline = StableDiffusionControlNetPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet, # Your fine-tuned ControlNet
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
image_encoder=None, # Explicitly set to None as it's not part of this setup
requires_safety_checker=False,
)
pipeline.to(DEVICE)
if torch.cuda.is_available() and hasattr(pipeline, "enable_xformers_memeory_efficient_attention"):
try:
pipeline.enable_xformers_memory_efficient_attention()
print("xformers memory efficient attention enabled.")
except Exception as e:
print(f"Could not enable xformers: {e}")
load_depth_estimator()
except Exception as e:
print(f"Error loading pipeline: {e}")
pipeline = None
raise RuntimeError(f"Failed to load diffusion pipeline: {e}")
return pipeline
def estimate_depth(pil_image: Image.Image) ->Image.Image:
global depth_estimator_model, depth_estimator_processor
if depth_estimator_model is None or depth_estimator_processor is None:
try:
load_depth_estimator()
except RuntimeError as e:
raise RuntimeError(f"Depth estimator not loaded: {e}")
input = depth_estimator_processor(pil_image, return_tensors = "pt")
input = {k: v.to(DEVICE) for k, v in input.items()}
with torch.no_grad():
output = depth_estimator_model(**input)
predicted_depth = output.predicted_depth
depth_numpy = predicted_depth.squeeze().cpu().numpy()
min_depth = depth_numpy.min()
max_depth = depth_numpy.max()
normalized_depth = (depth_numpy - min_depth) / (max_depth - min_depth)
inverted_normalized_depth = 1 - normalized_depth
depth_image_array = (inverted_normalized_depth * 255).astype(np.uint8)
depth_pil_image = Image.fromarray(depth_image_array).convert("RGB")
print("Depth estimation complete.")
return depth_pil_image
def generate_image_for_gradio(
input_image_for_depth: Image.Image,
prompt: str
) -> Image.Image:
global pipeline
if pipeline is None:
try:
load_diffusion_pipeline()
except RuntimeError as e:
return gr.Error(f"Model not loaded: {e}")
try:
depth_map_pil = estimate_depth(input_image_for_depth)
except Exception as e:
return gr.Error(f"Error during depth estimation: {e}")
print(f"Generating image for prompt: '{prompt}'")
negative_prompt = "lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly"
control_image = depth_map_pil.convert("RGB")
control_image = control_image.resize((512, 512), Image.LANCZOS)
input_image_for_pipeline = [control_image]
generator = None
# if seed is None:
seed = random.randint(0, 100000)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with torch.no_grad():
generated_images = pipeline(
prompt,
image=input_image_for_pipeline,
num_inference_steps=25,
guidance_scale=8.0,
generator=generator,
).images
# with torch.no_grad():
# generated_images = pipeline(
# prompt,
# negative_prompt,
# image=input_image_for_pipeline,
# num_inference_steps=25,
# # guidance_scale=8.0,
# strength = 0.85,
# generator=generator,
# ).images
print(f"Image generation complete (seed: {seed}).")
return generated_images[0]
# iface = gr.Interface(
# fn=generate_image_for_gradio,
# inputs=[
# gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design"),
# gr.Image(type="pil", label="Input Image (for Depth Estimation)"),
# gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Inference Steps"),
# gr.Slider(minimum=1.0, maximum=20.0, value=8.0, step=0.5, label="Guidance Scale"),
# gr.Number(label="Seed (optional, leave blank for random)", value=None),
# gr.Number(label="Resolution", value=512, interactive=False)
# ],
# outputs=gr.Image(type="pil", label="Generated Image"),
# title="Stable Diffusion ControlNet Depth Demo (with Depth Estimation)",
# description="Upload an input image, and the app will estimate its depth map, then use it with your prompt to generate a new image. This allows for structural guidance from your input photo.",
# allow_flagging="never",
# live=False,
# theme=Soft(),
iface = gr.Interface(
fn=generate_image_for_gradio,
inputs=[
gr.Image(type="pil", label="Input Image (for Depth Estimation)"),
gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design"),
],
outputs=gr.Image(type="pil", label="Generated Image"),
title="Stable Diffusion ControlNet Depth Demo (with Depth Estimation)",
description="Upload an input image, and the app will estimate its depth map, then use it with your prompt to generate a new image. This allows for structural guidance from your input photo.",
allow_flagging="never",
live=False,
theme=Soft(),
css="""
/* Target the upload icon within the Image component */
.gr-image .icon-lg {
font-size: 2em !important; /* Adjust size as needed, e.g., 2em, 3em */
max-width: 50px; /* Max width to prevent it from filling the container */
max-height: 50px; /* Max height */
}
/* Target the image placeholder icon (if it's different) */
.gr-image .gr-image-placeholder {
max-width: 100px; /* Adjust size as needed */
max-height: 100px;
object-fit: contain; /* Ensures the icon scales down without distortion */
}
/* General styling for the image input area to ensure it has space */
.gr-image-container {
min-height: 200px; /* Give the image input area a minimum height */
display: flex;
align-items: center;
justify-content: center;
}
"""
)
load_diffusion_pipeline()
if __name__ == "__main__":
iface.launch() |