from loguru import logger
import pandas as pd
import json
from datetime import datetime
import ast
import numpy as np
from pymongo import MongoClient
from collections import defaultdict

from tqdm import tqdm
import time

import requests
import json
import os
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from textblob import TextBlob
import re
from transformers import BertTokenizer, BertModel
from transformers import RobertaTokenizer, RobertaModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# Download NLTK resources
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger_eng')

class Preprocessor:
    def __init__(self,df):
        self.df=df
        self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        self.model = RobertaModel.from_pretrained('roberta-base')
        self.stop_words = set(stopwords.words('english'))
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # Add this line



    def get_bert_embedding(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)
        with torch.no_grad():
            outputs = self.model(**inputs)
        return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
    
    def preprocess_text(self,text):
        return text if pd.notna(text) else ""

    
    def calculate_duration(self, time_range):
        if not isinstance(time_range, str) or "-" not in time_range:
            return None
        start_str, end_str = time_range.split('-')
        start_str = start_str.strip() + ':00' if len(start_str.split(':')) == 1 else start_str.strip()
        end_str = end_str.strip() + ':00' if len(end_str.split(':')) == 1 else end_str.strip()
        try:
            start = datetime.strptime(start_str, '%H:%M')
            end = datetime.strptime(end_str, '%H:%M')
            duration = (end - start).total_seconds() / 3600  
            return duration if duration >= 0 else duration + 24  
        except ValueError:
            return None
    def calculate_sentiment_severity(self, text):
        if pd.isna(text) or not text.strip():
            return pd.Series({"good_severity": 0.0, "bad_severity": 0.0})
        
        # Get sentiment polarity (-1 to 1)
        blob = TextBlob(text)
        polarity = blob.sentiment.polarity
        
        # Define severity weights
        good_weight = 0.7
        bad_weight = 0.3
        
        if polarity > 0:  
            good_severity = good_weight * polarity  
            bad_severity = 0.0
        elif polarity < 0:  
            good_severity = 0.0
            bad_severity = bad_weight * abs(polarity)  
        else:  # Neutral (polarity = 0)
            good_severity = 0.0
            bad_severity = 0.0
        
        return pd.Series({"good_severity": good_severity, "bad_severity": bad_severity})

    
    def get_avg_duration(self, hours_str):
        if pd.isna(hours_str) or not isinstance(hours_str, str):
            return pd.NA  
        try:
            hours_dict = ast.literal_eval(hours_str)
            if not hours_dict:  
                return pd.NA
            durations = [self.calculate_duration(time_range) for time_range in hours_dict.values()]
            valid_durations = [d for d in durations if d is not None]
            return sum(valid_durations) / len(valid_durations) if valid_durations else pd.NA
        except (ValueError, SyntaxError, ZeroDivisionError):
            return pd.NA


    def calculate_time_since_last_review(self):
        present_date = datetime.now()
        user_latest_timestamp = {}
    
        # Convert review_date to datetime
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Calculate hours difference for each user's latest review
        for user_id in self.df["user_id"].unique():
            latest_date = self.df[self.df["user_id"] == user_id]["review_date"].max()
            
            if not isinstance(latest_date, datetime):
                latest_date = latest_date.to_pydatetime()
            
            hours_difference = (present_date - latest_date).total_seconds() / 3600
            user_latest_timestamp[user_id] = hours_difference
    
        # Map the hours difference to a new column
        self.df["time_since_last_review_user"] = self.df["user_id"].map(user_latest_timestamp)

    def calculate_time_since_last_review_business(self):
        present_date = datetime.now()
        
        # Ensure review_date is in datetime format
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Initialize dictionary to store hours since last review for each business
        business_latest_timestamp = {}
    
        # Iterate over unique business_ids
        for business_id in self.df["business_id"].unique():
            # Get the latest review date for this business
            latest_date = self.df[self.df["business_id"] == business_id]["review_date"].max()
            
            # Convert to datetime object if needed
            if not isinstance(latest_date, datetime):
                latest_date = latest_date.to_pydatetime()
            
            # Calculate hours difference (already in hours)
            hours_difference = (present_date - latest_date).total_seconds() / 3600
            business_latest_timestamp[business_id] = hours_difference
    
        # Map the hours difference to the new column
        self.df["time_since_last_review_business"] = self.df["business_id"].map(business_latest_timestamp)



    def calculate_user_account_age(self):
        present_date = datetime.now()
    
        # Convert yelping_since to datetime
        self.df["yelping_since"] = pd.to_datetime(self.df["yelping_since"])
    
        # Calculate user account age in days
        self.df["user_account_age"] = (present_date - self.df["yelping_since"]).dt.days


    def calculate_avg_time_between_reviews(self):
        # Ensure review_date is in datetime format
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Sort the DataFrame by user_id and review_date to ensure chronological order
        self.df = self.df.sort_values(["user_id", "review_date"])
    
        # Define helper function to calculate average time between reviews
        def calculate_avg_time(group):
            if len(group) == 1:
                return 0  # If only one review, assign 0
            # Calculate differences in hours between consecutive reviews
            diffs = group["review_date"].diff().dt.total_seconds() / 3600
            # Drop the first NaN (from diff) and compute the mean
            return diffs.dropna().mean()
    
        # Apply the function to each user_id group and create a mapping
        avg_time_per_user = self.df.groupby("user_id").apply(calculate_avg_time)
    
        # Map the average time back to the original DataFrame
        self.df["average_time_between_reviews"] = self.df["user_id"].map(avg_time_per_user)


    def calculate_user_degree(self):
    # Calculate the number of unique businesses per user
        user_business_counts = self.df.groupby("user_id")["business_id"].nunique()
    
        # Map the counts back to the original DataFrame
        self.df["user_degree"] = self.df["user_id"].map(user_business_counts)
    
    
    def calculate_business_degree(self):
        # Calculate the number of unique users per business
        business_user_counts = self.df.groupby("business_id")["user_id"].nunique()
    
        # Map the counts back to the original DataFrame
        self.df["business_degree"] = self.df["business_id"].map(business_user_counts)
    
    
    def calculate_rating_variance_user(self):
        # Calculate the mode (most frequent rating) per user
        user_rating_mode = self.df.groupby("user_id")["review_stars"].agg(lambda x: x.mode()[0])
    
        # Map the most frequent rating back to the original DataFrame
        self.df["rating_variance_user"] = self.df["user_id"].map(user_rating_mode)


    def calculate_user_review_burst_count(self):
    # Ensure review_date is in datetime format
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Sort by user_id and review_date for chronological order
        self.df = self.df.sort_values(["user_id", "review_date"])
    
        # Function to calculate the max number of reviews in any 20-day window
        def calculate_burst_count(group):
            if len(group) <= 1:
                return 0  # No burst if 1 or fewer reviews
            
            # Convert review_date to a Series for rolling window
            dates = group["review_date"]
            
            # Calculate the number of reviews within 20 days of each review
            burst_counts = []
            for i, date in enumerate(dates):
                # Count reviews within 20 days after this date
                window_end = date + pd.Timedelta(days=20)
                count = ((dates >= date) & (dates <= window_end)).sum()
                burst_counts.append(count)
            
            # Return the maximum burst count for this user
            return max(burst_counts)
    
        # Calculate the burst count per user
        user_burst_counts = self.df.groupby("user_id").apply(calculate_burst_count)
    
        # Map the burst count back to the original DataFrame
        self.df["user_review_burst_count"] = self.df["user_id"].map(user_burst_counts)
    
    
    def calculate_business_review_burst_count(self):
        # Ensure review_date is in datetime format
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Sort by business_id and review_date for chronological order
        self.df = self.df.sort_values(["business_id", "review_date"])
    
        # Function to calculate the max number of reviews in any 10-day window
        def calculate_burst_count(group):
            if len(group) <= 1:
                return 0  # No burst if 1 or fewer reviews
            
            # Convert review_date to a Series for rolling window
            dates = group["review_date"]
            
            # Calculate the number of reviews within 10 days of each review
            burst_counts = []
            for i, date in enumerate(dates):
                # Count reviews within 10 days after this date
                window_end = date + pd.Timedelta(days=10)
                count = ((dates >= date) & (dates <= window_end)).sum()
                burst_counts.append(count)
            
            # Return the maximum burst count for this business
            return max(burst_counts)
    
        # Calculate the burst count per business
        business_burst_counts = self.df.groupby("business_id").apply(calculate_burst_count)
    
        # Map the burst count back to the original DataFrame
        self.df["business_review_burst_count"] = self.df["business_id"].map(business_burst_counts)
        
    
    def calculate_temporal_similarity(self):
        self.df["review_date"] = pd.to_datetime(self.df["review_date"])
    
        # Extract the day of the week (0 = Monday, 6 = Sunday)
        self.df["day_of_week"] = self.df["review_date"].dt.dayofweek
    
        # Function to calculate avg hours between reviews on frequent days
        def calculate_avg_hours_on_frequent_days(group):
            frequent_days = group["day_of_week"].mode().tolist()
            
            if len(group) <= 1:
                return 0
            
            frequent_reviews = group[group["day_of_week"].isin(frequent_days)]
            
            if len(frequent_reviews) <= 1:
                return 0
            
            frequent_reviews = frequent_reviews.sort_values("review_date")
            diffs = frequent_reviews["review_date"].diff().dt.total_seconds() / 3600
            
            return diffs.dropna().mean()
    
        # Calculate average hours for each user
        avg_hours_per_user = self.df.groupby("user_id").apply(calculate_avg_hours_on_frequent_days)
    
        # Map the average hours to the new column
        self.df["temporal_similarity"] = self.df["user_id"].map(avg_hours_per_user)
    
        # Drop temporary column
        self.df = self.df.drop(columns=["day_of_week"])


    def calculate_rating_deviation_from_business_average(self):
    # Calculate the average rating per business
        business_avg_rating = self.df.groupby("business_id")["review_stars"].mean()
    
        # Map the average rating to each row
        self.df["business_avg_rating"] = self.df["business_id"].map(business_avg_rating)
    
        # Calculate the deviation from the business average
        self.df["rating_deviation_from_business_average"] = (
            self.df["review_stars"] - self.df["business_avg_rating"]
        )
    
        # Drop the temporary column
        self.df = self.df.drop(columns=["business_avg_rating"])
    
    def calculate_review_like_ratio(self):
        # Create a binary column for liked reviews (stars >= 4)
        self.df["is_liked"] = (self.df["review_stars"] >= 4).astype(int)
    
        # Calculate the like ratio per user
        user_like_ratio = self.df.groupby("user_id")["is_liked"].mean()
    
        # Map the like ratio back to the DataFrame
        self.df["review_like_ratio"] = self.df["user_id"].map(user_like_ratio)
    
        # Drop the temporary column
        self.df = self.df.drop(columns=["is_liked"])
    
    def calculate_latest_checkin_hours(self):
        self.df["yelping_since"] = pd.to_datetime(self.df["yelping_since"])
    
        # Function to get the latest check-in date from a list of strings
        def get_latest_checkin(checkin_list):
            if not checkin_list or pd.isna(checkin_list):  # Handle empty or NaN
                return None
            if isinstance(checkin_list, str):
                checkin_dates = checkin_list.split(", ")
            else:
                checkin_dates = checkin_list
            return pd.to_datetime(checkin_dates).max()
    
        # Apply the function to get the latest check-in date per row
        self.df["latest_checkin_date"] = self.df["checkin_date"].apply(get_latest_checkin)
    
        # Calculate the hours difference between latest check-in and yelping_since
        self.df["latest_checkin_hours"] = (
            (self.df["latest_checkin_date"] - self.df["yelping_since"])
            .dt.total_seconds() / 3600
        )
    
        # Drop the temporary column
        self.df = self.df.drop(columns=["latest_checkin_date"])
        self.df["latest_checkin_hours"].fillna(0,inplace=True)
        
    
    def compute_pronoun_density(self, text):
        text = self.preprocess_text(text)
        if not text:
            return 0
        words = word_tokenize(text.lower())
        pos_tags = nltk.pos_tag(words)
        pronouns = sum(1 for word, pos in pos_tags if pos in ['PRP', 'PRP$'] and word in ['i', 'we'])
        return pronouns / len(words) if words else 0
    
    def compute_avg_sentence_length(self, text):
        text = self.preprocess_text(text)
        if not text:
            return 0
        sentences = sent_tokenize(text)
        return sum(len(word_tokenize(sent)) for sent in sentences) / len(sentences) if sentences else 0
    
    def compute_excessive_punctuation(self, text):
        text = self.preprocess_text(text)
        return len(re.findall(r'[!?.]{2,}', text))
    
    def compute_sentiment_polarity(self, text):
        text = self.preprocess_text(text)
        return TextBlob(text).sentiment.polarity if text else 0

    def compute_code_switching_flag(self, text):
        text = self.preprocess_text(text)
        if not text:
            return 0
        
        tokens = self.tokenizer.tokenize(text.lower())
        if not tokens:
            return 0
        
        english_words = self.stop_words  # Use self.stop_words from __init__
        token_set = set(tokens)
        english_count = sum(1 for token in tokens if token in english_words)
        
        non_english_pattern = re.compile(r'[^\x00-\x7F]')
        has_non_ascii = 1 if non_english_pattern.search(text) else 0
        
        english_ratio = english_count / len(tokens) if tokens else 0
        
        non_english_tokens = sum(1 for token in token_set if token not in english_words and "##" in token and has_non_ascii)
        
        # Flag as code-switching if:
        # 1. Mixed English presence (ratio between 0.1 and 0.9)
        # 2. Non-ASCII characters present OR some non-English subword tokens
        if 0.1 < english_ratio < 0.9 and (has_non_ascii or non_english_tokens > 0):
            return 1
        return 0
    
    
    def batch_tokenize(self, texts, batch_size=32, max_length=512):
        tokenized_outputs = []
        for i in tqdm(range(0, len(texts), batch_size), desc="Tokenizing with RoBERTa on GPU"):
            batch_texts = texts[i:i + batch_size]
            valid_texts = [self.preprocess_text(t) for t in batch_texts]
            # Tokenize with fixed max_length to ensure consistent tensor sizes
            inputs = self.tokenizer(valid_texts, return_tensors='pt', truncation=True, padding='max_length', max_length=max_length)
            tokenized_outputs.append(inputs['input_ids'].to(self.device))  # Move to GPU
        # Concatenate on GPU with consistent sizes
        return torch.cat(tokenized_outputs, dim=0)
    
    def compute_grammar_error_score(self, texts, tokenized_ids):
        print("Computing grammar error scores...")
        error_scores = np.zeros(len(texts), dtype=float)
        
        vocab_set = set(self.tokenizer.get_vocab().keys())
        for i, input_ids in enumerate(tqdm(tokenized_ids, desc="Processing Grammar Errors")):
            if input_ids.sum() == 0:  # Empty input
                continue
            tokens = self.tokenizer.convert_ids_to_tokens(input_ids.cpu().tolist(), skip_special_tokens=True)
            unknown_count = sum(1 for token in tokens if token not in vocab_set and token not in self.stop_words)
            total_count = len([t for t in tokens if t not in self.stop_words])
            error_scores[i] = unknown_count / total_count if total_count > 0 else 0
        
        return error_scores
    
    def compute_repetitive_words_count(self, texts, tokenized_ids):
        print("Computing repetitive words counts...")
        rep_counts = np.zeros(len(texts), dtype=int)
        
        for i, input_ids in enumerate(tqdm(tokenized_ids, desc="Processing Repetition")):
            if input_ids.sum() == 0:  # Empty input
                continue
            tokens = self.tokenizer.convert_ids_to_tokens(input_ids.cpu().tolist(), skip_special_tokens=True)
            valid_tokens = [t for t in tokens if t not in self.stop_words and len(t) > 2]
            if valid_tokens:
                token_counts = {}
                for token in valid_tokens:
                    token_counts[token] = token_counts.get(token, 0) + 1
                rep_counts[i] = sum(1 for count in token_counts.values() if count > 1)
        
        return rep_counts
        
    def preprocess_text_for_similarity(self, text):
        if pd.isna(text) or not text.strip():
            return []
        return [w for w in word_tokenize(str(text).lower()) if w not in self.stop_words]
    
    def batch_encode_words(self, texts, batch_size=32, max_length=512):
        word_lists = [self.preprocess_text_for_similarity(t) for t in tqdm(texts, desc="Tokenizing Texts")]
        vocab = {word: idx + 1 for idx, word in enumerate(set.union(*[set(w) for w in word_lists if w]))}
        
        encoded_batches = []
        for i in tqdm(range(0, len(word_lists), batch_size), desc="Encoding Words on GPU"):
            batch_words = word_lists[i:i + batch_size]
            encoded = np.zeros((len(batch_words), max_length), dtype=np.int64)
            for j, words in enumerate(batch_words):
                if words:
                    word_ids = [vocab.get(w, 0) for w in words][:max_length]
                    encoded[j, :len(word_ids)] = word_ids
            encoded_tensor = torch.tensor(encoded, dtype=torch.int64).to(self.device)
            encoded_batches.append(encoded_tensor)
        
        return torch.cat(encoded_batches, dim=0), vocab
    
    def compute_similarity_to_other_reviews(self, batch_size=32, max_length=512):
        all_texts = self.df["review_text"].tolist()
        all_users = self.df["user_id"].tolist()
        all_review_ids = self.df["review_id"].tolist()
        
        encoded_words, vocab = self.batch_encode_words(all_texts, batch_size, max_length)
        
        similarity_scores = {rid: 0.0 for rid in all_review_ids}  # Default scores
        for i, (review_id, user_id) in enumerate(tqdm(zip(all_review_ids, all_users), desc="Computing Similarities on GPU")):
            if pd.isna(review_id) or pd.isna(user_id):
                continue
            
            current_words = encoded_words[i]
            if current_words.sum() == 0:
                continue
            
            other_indices = torch.tensor([j for j, u in enumerate(all_users) if u != user_id and pd.notna(u)], 
                                       dtype=torch.long).to(self.device)
            if not other_indices.numel():
                continue
            
            other_words = encoded_words[other_indices]
            current_set = torch.unique(current_words[current_words > 0])
            other_flat = other_words[other_words > 0]
            
            if other_flat.numel() == 0:
                continue
            
            other_set = torch.unique(other_flat)
            intersection = torch.sum(torch.isin(current_set, other_set)).float()
            union = torch.unique(torch.cat([current_set, other_set])).numel()
            similarity = intersection / union if union > 0 else 0.0
            
            similarity_scores[review_id] = similarity.item()
        return pd.Series(similarity_scores, index=all_review_ids)  
        
    def calculate_friend_count(self):
        friends = []
        for v in self.df["friends"]:
            if isinstance(v, str):
                friends.append(len(v.split(",")))
            elif type(v)==int or type(v)==float:
                friends.append(0)
        self.df["friends"] = friends

    def count_elite_years(self, elite):
        if pd.isna(elite):  
            return 0
        return len(str(elite).split(","))  
    
    def transform_elite_status(self):
        self.df["elite"] = self.df["elite"].apply(lambda x: True if self.count_elite_years(x) > 1 else False)
        self.df["elite"] = self.df["elite"].astype(int)


    def calculate_review_useful_funny_cool(self):
        self.df["review_useful"] = pd.to_numeric(self.df["review_useful"], errors='coerce').fillna(0)
        self.df["review_funny"] = pd.to_numeric(self.df["review_funny"], errors='coerce').fillna(0)
        self.df["review_cool"] = pd.to_numeric(self.df["review_cool"], errors='coerce').fillna(0)
        self.df["review_useful_funny_cool"] = (
            self.df["review_useful"] + 
            self.df["review_funny"] + 
            self.df["review_cool"]
        )
        self.df["review_useful_funny_cool"] = self.df["review_useful_funny_cool"].fillna(0).astype(int)
        
    
    def calculate_user_useful_funny_cool(self):
        self.df["user_useful_funny_cool"] = (
            self.df["user_useful"] + 
            self.df["user_funny"] + 
            self.df["user_cool"]
        )
        self.df["user_useful_funny_cool"] = self.df["user_useful_funny_cool"].fillna(0).astype(int)
    
    def compute_fake_score(self, row):
        suspicion_points = 0
        
        # Linguistic Features
        if row["pronoun_density"] < 0.01:  # Low personal engagement
            suspicion_points += 1
        if row["avg_sentence_length"] < 5 or row["avg_sentence_length"] > 30:  # Extreme lengths
            suspicion_points += 1
        if row["grammar_error_score"] > 5:  # Many errors
            suspicion_points += 1
        if row["repetitive_words_count"] > 5:  # High repetition
            suspicion_points += 1
        if row["code_switching_flag"] == 1:  # Language mixing
            suspicion_points += 1
        if row["excessive_punctuation_count"] > 3:  # Overuse of punctuation
            suspicion_points += 1
        if abs(row["sentiment_polarity"]) > 0.8:  # Extreme sentiment
            suspicion_points += 1
        
        # Review Patterns
        if row["similarity_to_other_reviews"] > 0.8:  # High duplication
            suspicion_points += 1
        if row["user_review_burst_count"] > 5:  # Spammy bursts
            suspicion_points += 1
        if row["business_review_burst_count"] > 5:  # Targeted bursts
            suspicion_points += 1
        if abs(row["rating_deviation_from_business_average"]) > 2:  # Large rating deviation
            suspicion_points += 1
        if row["review_like_ratio"] > 0.9 or row["review_like_ratio"] < 0.1:  # Extreme like ratio
            suspicion_points += 1
        
        # User Behavior
        if row["user_account_age"] < 30:  # Very new account (days)
            suspicion_points += 1
        if row["average_time_between_reviews"] < 24:  # Rapid reviews (hours)
            suspicion_points += 1
        if row["user_degree"] < 2:  # Low business interaction
            suspicion_points += 1
        if row["time_since_last_review_user"] < 24:  # Recent burst (hours)
            suspicion_points += 1
        
        # Threshold: 3 or more points = fake
        return 1 if suspicion_points >= 3 else 0

    def dropping_unncessary_columns(self):
       
        self.df.drop("review_text", axis=1, inplace=True)
        self.df.drop("review_date", axis=1, inplace=True)
        self.df.drop("business_name", axis=1, inplace=True)
        self.df.drop("address", axis=1, inplace=True)
        self.df.drop("city", axis=1, inplace=True)
        self.df.drop("state", axis=1, inplace=True)
        self.df.drop("postal_code", axis=1, inplace=True)
        self.df.drop("categories", axis=1, inplace=True)
        self.df.drop("user_name", axis=1, inplace=True)
        self.df.drop("yelping_since", axis=1, inplace=True)
        self.df.drop("checkin_date", axis=1, inplace=True)
        self.df.drop("review_useful", axis=1, inplace=True)
        self.df.drop("review_funny", axis=1, inplace=True)
        self.df.drop("review_cool", axis=1, inplace=True)
        self.df.drop("user_useful", axis=1, inplace=True)
        self.df.drop("user_funny", axis=1, inplace=True)
        self.df.drop("user_cool", axis=1, inplace=True)
        self.df.drop("is_open", axis=1, inplace=True)
        self.df.drop("compliment_hot", axis=1, inplace=True)
        self.df.drop("compliment_more", axis=1, inplace=True)
        self.df.drop("compliment_profile", axis=1, inplace=True)
        self.df.drop("compliment_cute", axis=1, inplace=True)
        self.df.drop("compliment_list", axis=1, inplace=True)
        self.df.drop("compliment_note", axis=1, inplace=True)
        self.df.drop("compliment_plain", axis=1, inplace=True)
        self.df.drop("compliment_cool", axis=1, inplace=True)
        self.df.drop("compliment_funny", axis=1, inplace=True)
        self.df.drop("compliment_writer", axis=1, inplace=True)
        self.df.drop("compliment_photos", axis=1, inplace=True)
       
    def run_pipeline(self):

        
        
        logger.info("FINALYZING HOURS COLUMN ...")
        self.df["hours"] = self.df["hours"].apply(self.get_avg_duration)
        self.df["hours"] = self.df["hours"].fillna(0)
        print(self.df["hours"][:10])
        print(self.df["hours"].isnull().sum())


        

        logger.info("FINALYZING ATTRIBUTES COLUMN ...")
        self.df.drop("attributes",axis=1,inplace=True)


        
        logger.info("CREATING time_since_last_review_user COLUMN ...")
        self.calculate_time_since_last_review()
        print(np.unique(self.df["time_since_last_review_user"] ))

        
        logger.info("CREATING time_since_last_review_business COLUMN ...")
        self.calculate_time_since_last_review_business()
        print(np.unique(self.df["time_since_last_review_business"] ))



        logger.info("CREATING user_account_age COLUMN ...")
        self.calculate_user_account_age()
        print(np.unique(self.df["user_account_age"] ))



        logger.info("CREATING average_time_between_reviews COLUMN ...")
        self.calculate_avg_time_between_reviews()
        print(np.unique(self.df["average_time_between_reviews"] ))



        logger.info("CREATING user_degree COLUMN ...")
        self.calculate_user_degree()
        print(np.unique(self.df["user_degree"] ))

        
        logger.info("CREATING business_degree COLUMN ...")
        self.calculate_business_degree()
        print(np.unique(self.df["business_degree"] ))


        logger.info("CREATING rating_variance_user COLUMN ...")
        self.calculate_rating_variance_user()
        print(np.unique(self.df["rating_variance_user"] ))



        logger.info("CREATING user_review_burst_count COLUMN ...")
        self.calculate_user_review_burst_count()
        print(np.unique(self.df["user_review_burst_count"] ))


        logger.info("CREATING business_review_burst_count COLUMN ...")
        self.calculate_business_review_burst_count()
        print(np.unique(self.df["business_review_burst_count"] ))


        
        logger.info("CREATING temporal_similarity COLUMN ...")
        self.calculate_temporal_similarity()
        print(np.unique(self.df["temporal_similarity"] ))



        logger.info("CREATING rating_deviation_from_business_average COLUMN ...")
        self.calculate_rating_deviation_from_business_average()
        print(np.unique(self.df["rating_deviation_from_business_average"] ))



        logger.info("CREATING review_like_ratio COLUMN ...")
        self.calculate_review_like_ratio()
        print(np.unique(self.df["review_like_ratio"] ))



        logger.info("CREATING latest_checkin_hours COLUMN ...")
        self.calculate_latest_checkin_hours()
        print(np.unique(self.df["latest_checkin_hours"] ))




        logger.info("CREATING pronoun_density COLUMN ...")
        self.df["pronoun_density"] = self.df["review_text"].apply(self.compute_pronoun_density)
        print(np.unique(self.df["pronoun_density"] ))

        logger.info("CREATING avg_sentence_length COLUMN ...")
        self.df["avg_sentence_length"] = self.df["review_text"].apply(self.compute_avg_sentence_length)
        print(np.unique(self.df["avg_sentence_length"] ))

        logger.info("CREATING excessive_punctuation_count COLUMN ...")
        self.df["excessive_punctuation_count"] = self.df["review_text"].apply(self.compute_excessive_punctuation)
        print(np.unique(self.df["excessive_punctuation_count"] ))

        logger.info("CREATING sentiment_polarity COLUMN ...")
        self.df["sentiment_polarity"] = self.df["review_text"].apply(self.compute_sentiment_polarity)
        print(np.unique(self.df["sentiment_polarity"] ))

        logger.info("CREATING good_severity and  bad_severity COLUMNS ...")
        severity_scores = self.df["review_text"].apply(self.calculate_sentiment_severity)
        self.df[["good_severity", "bad_severity"]] = severity_scores
        print(np.unique(self.df["good_severity"] ))
        print(np.unique(self.df["bad_severity"] ))


        logger.info("CREATING code_switching_flag COLUMN ...")
        self.df["code_switching_flag"] = self.df["review_text"].apply(self.compute_code_switching_flag)
        print(np.unique(self.df["code_switching_flag"] ))


        all_texts = self.df["review_text"].tolist()
        tokenized_ids = self.batch_tokenize(all_texts, batch_size=32, max_length=512)
            
        logger.info("CREATING grammar_error_score COLUMN ...")
        self.df["grammar_error_score"] = self.compute_grammar_error_score(all_texts, tokenized_ids)
        print(np.unique(self.df["grammar_error_score"] ))


        logger.info("CREATING repetitive_words_count COLUMN ...")
        self.df["repetitive_words_count"] = self.compute_repetitive_words_count(all_texts, tokenized_ids)
        print(np.unique(self.df["repetitive_words_count"] ))



        logger.info("CREATING similarity_to_other_reviews COLUMN ...")
        similarity_scores = self.compute_similarity_to_other_reviews(batch_size=32, max_length=512)
        self.df["similarity_to_other_reviews"] = self.df["review_id"].map(similarity_scores)
        
        print(np.unique(self.df["similarity_to_other_reviews"] ))



        logger.info("CREATING friends COLUMN ...")    
        self.calculate_friend_count()
        print(self.df["friends"].value_counts())

        logger.info("CREATING elite COLUMN ...")
        self.transform_elite_status()
        print(self.df["elite"].value_counts())


        logger.info("CREATING review_useful_funny_cool COLUMN ...")
        self.calculate_review_useful_funny_cool()
        print(self.df["review_useful_funny_cool"].value_counts())


        logger.info("CREATING user_useful_funny_cool COLUMN ...")
        self.calculate_user_useful_funny_cool()
        print(self.df["user_useful_funny_cool"].value_counts())


        # logger.info("CREATING LABEL COLUMN ...")
        # self.df["fake"] = self.df.apply(self.compute_fake_score, axis=1)
        # print(self.df["fake"].value_counts())
        
        logger.info("DELETING THE UNWANTED COLUMNS ...")
        self.dropping_unncessary_columns()
        print()

        logger.info("SEEING NULL VALUES IN FINAL COLUMNS.....")
        print(set(self.df.isnull().sum().values))
        

        

        return self.df