Spaces:
Runtime error
Runtime error
Commit
Β·
af0979f
1
Parent(s):
1953e40
Add prefilling
Browse files
app.py
CHANGED
|
@@ -85,35 +85,51 @@ def deepseek(image, text_input, model_id):
|
|
| 85 |
system_prompt=""
|
| 86 |
).to(vl_gpt.device)
|
| 87 |
|
| 88 |
-
# run image encoder to get the image embeddings
|
| 89 |
-
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
| 90 |
-
|
| 91 |
-
# run the model to get the response
|
| 92 |
-
outputs = vl_gpt.language.generate(
|
| 93 |
-
inputs_embeds=inputs_embeds,
|
| 94 |
-
attention_mask=prepare_inputs.attention_mask,
|
| 95 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 96 |
-
bos_token_id=tokenizer.bos_token_id,
|
| 97 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 98 |
-
max_new_tokens=512,
|
| 99 |
-
do_sample=False,
|
| 100 |
-
use_cache=True
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False)
|
| 104 |
-
|
| 105 |
-
print(f"{prepare_inputs['sft_format'][0]}", answer)
|
| 106 |
-
det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>"
|
| 107 |
-
|
| 108 |
-
det_match = re.search(det_pattern, answer)
|
| 109 |
-
if det_match is None:
|
| 110 |
-
return text_input, [], image
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
@spaces.GPU
|
|
|
|
| 85 |
system_prompt=""
|
| 86 |
).to(vl_gpt.device)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
|
| 91 |
+
# run image encoder to get the image embeddings
|
| 92 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
| 93 |
+
|
| 94 |
+
inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
|
| 95 |
+
input_ids=prepare_inputs.input_ids,
|
| 96 |
+
images=prepare_inputs.images,
|
| 97 |
+
images_seq_mask=prepare_inputs.images_seq_mask,
|
| 98 |
+
images_spatial_crop=prepare_inputs.images_spatial_crop,
|
| 99 |
+
attention_mask=prepare_inputs.attention_mask,
|
| 100 |
+
chunk_size=512 # prefilling size
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# run the model to get the response
|
| 104 |
+
outputs = vl_gpt.generate(
|
| 105 |
+
inputs_embeds=inputs_embeds,
|
| 106 |
+
input_ids=prepare_inputs.input_ids,
|
| 107 |
+
images=prepare_inputs.images,
|
| 108 |
+
images_seq_mask=prepare_inputs.images_seq_mask,
|
| 109 |
+
images_spatial_crop=prepare_inputs.images_spatial_crop,
|
| 110 |
+
attention_mask=prepare_inputs.attention_mask,
|
| 111 |
+
past_key_values=past_key_values,
|
| 112 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 113 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 114 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 115 |
+
max_new_tokens=512,
|
| 116 |
+
do_sample=False,
|
| 117 |
+
use_cache=True,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False)
|
| 121 |
+
print(f"{prepare_inputs['sft_format'][0]}", answer)
|
| 122 |
+
det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>"
|
| 123 |
+
|
| 124 |
+
det_match = re.search(det_pattern, answer)
|
| 125 |
+
if det_match is None:
|
| 126 |
+
return text_input, [], image
|
| 127 |
+
|
| 128 |
+
det_content = det_match.group(1)
|
| 129 |
+
bbox = [int(v.strip()) for v in det_content.split(",")]
|
| 130 |
+
|
| 131 |
+
scaled_boxes = rescale_bounding_boxes([bbox], image.width, image.height)
|
| 132 |
+
return answer, scaled_boxes, draw_bounding_boxes(image, scaled_boxes)
|
| 133 |
|
| 134 |
|
| 135 |
@spaces.GPU
|