programmnix-askui commited on
Commit
48483a7
Β·
1 Parent(s): 2053bec

test input

Browse files
Files changed (1) hide show
  1. app.py +8 -60
app.py CHANGED
@@ -1,7 +1,5 @@
1
  import gradio as gr
2
  import spaces
3
- #from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
4
- # from qwen_vl_utils import process_vision_info
5
  import torch
6
  import base64
7
  from PIL import Image, ImageDraw
@@ -17,14 +15,12 @@ from transformers import AutoModelForCausalLM
17
 
18
 
19
  models = {
20
- #"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"),
21
  "deepseek-ai/deepseek-vl2-tiny": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-tiny", trust_remote_code=True),
22
  #"deepseek-ai/deepseek-vl2-small": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-small", trust_remote_code=True),
23
  #"deepseek-ai/deepseek-vl2": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2", trust_remote_code=True)
24
  }
25
 
26
  processors = {
27
- #"OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
28
  "deepseek-ai/deepseek-vl2-tiny": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-tiny",),
29
  #"deepseek-ai/deepseek-vl2-small": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-small",),
30
  #"deepseek-ai/deepseek-vl2": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2",),
@@ -110,69 +106,21 @@ def deepseek(image, text_input, model_id):
110
  det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>"
111
 
112
  det_content = re.search(det_pattern, answer).group(1)
113
- bbox = [ int(v.strip()) / 999 for v in det_content.split(",")]
114
- w, h = image.size
115
- bbox = [[bbox[0] * w, bbox[1] * h, bbox[2] * w, bbox[3] * h]]
116
 
117
- #scaled_boxes = rescale_bounding_boxes([bbox], image.width, image.height)
118
- return text_input, bbox, draw_bounding_boxes(image, bbox)
 
 
 
 
119
 
120
 
121
  @spaces.GPU
122
  def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
123
-
124
  return deepseek(image, text_input, model_id)
125
 
126
-
127
- def run_example_old(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
128
- model = models[model_id].eval()
129
- processor = processors[model_id]
130
- prompt = f"In this UI screenshot, what is the position of the element corresponding to the command \"{text_input}\" (with bbox)?"
131
- messages = [
132
- {
133
- "role": "user",
134
- "content": [
135
- {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
136
- {"type": "text", "text": prompt},
137
- ],
138
- }
139
- ]
140
-
141
- text = processor.apply_chat_template(
142
- messages, tokenize=False, add_generation_prompt=True
143
- )
144
- image_inputs, video_inputs = process_vision_info(messages)
145
- inputs = processor(
146
- text=[text],
147
- images=image_inputs,
148
- videos=video_inputs,
149
- padding=True,
150
- return_tensors="pt",
151
- )
152
- inputs = inputs.to("cuda")
153
-
154
- generated_ids = model.generate(**inputs, max_new_tokens=128)
155
- generated_ids_trimmed = [
156
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
157
- ]
158
- output_text = processor.batch_decode(
159
- generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
160
- )
161
- print(output_text)
162
- text = output_text[0]
163
-
164
- object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
165
- box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"
166
-
167
- object_ref = re.search(object_ref_pattern, text).group(1)
168
- box_content = re.search(box_pattern, text).group(1)
169
-
170
- boxes = [tuple(map(int, pair.strip("()").split(','))) for pair in box_content.split("),(")]
171
- boxes = [[boxes[0][0], boxes[0][1], boxes[1][0], boxes[1][1]]]
172
-
173
- scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height)
174
- return object_ref, scaled_boxes, draw_bounding_boxes(image, scaled_boxes)
175
-
176
  css = """
177
  #output {
178
  height: 500px;
 
1
  import gradio as gr
2
  import spaces
 
 
3
  import torch
4
  import base64
5
  from PIL import Image, ImageDraw
 
15
 
16
 
17
  models = {
 
18
  "deepseek-ai/deepseek-vl2-tiny": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-tiny", trust_remote_code=True),
19
  #"deepseek-ai/deepseek-vl2-small": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-small", trust_remote_code=True),
20
  #"deepseek-ai/deepseek-vl2": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2", trust_remote_code=True)
21
  }
22
 
23
  processors = {
 
24
  "deepseek-ai/deepseek-vl2-tiny": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-tiny",),
25
  #"deepseek-ai/deepseek-vl2-small": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-small",),
26
  #"deepseek-ai/deepseek-vl2": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2",),
 
106
  det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>"
107
 
108
  det_content = re.search(det_pattern, answer).group(1)
109
+ if det_content is None:
110
+ return text_input, [], image
 
111
 
112
+ bbox = [ int(v.strip()) for v in det_content.split(",")]
113
+ #w, h = image.size
114
+ #bbox = [[bbox[0] * w, bbox[1] * h, bbox[2] * w, bbox[3] * h]]
115
+
116
+ scaled_boxes = rescale_bounding_boxes([scaled_boxes], image.width, image.height)
117
+ return text_input, scaled_boxes, draw_bounding_boxes(image, scaled_boxes)
118
 
119
 
120
  @spaces.GPU
121
  def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
 
122
  return deepseek(image, text_input, model_id)
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  css = """
125
  #output {
126
  height: 500px;