Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| #from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| # from qwen_vl_utils import process_vision_info | |
| import torch | |
| import base64 | |
| from PIL import Image, ImageDraw | |
| from io import BytesIO | |
| import re | |
| from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM | |
| from deepseek_vl2.utils.io import load_pil_images | |
| from transformers import AutoModelForCausalLM | |
| models = { | |
| "OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"), | |
| } | |
| processors = { | |
| "OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B") | |
| } | |
| def image_to_base64(image): | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| return img_str | |
| def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
| draw = ImageDraw.Draw(image) | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
| return image | |
| def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
| x_scale = original_width / scaled_width | |
| y_scale = original_height / scaled_height | |
| rescaled_boxes = [] | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| rescaled_box = [ | |
| xmin * x_scale, | |
| ymin * y_scale, | |
| xmax * x_scale, | |
| ymax * y_scale | |
| ] | |
| rescaled_boxes.append(rescaled_box) | |
| return rescaled_boxes | |
| def deepseek(): | |
| print("helloe!!!!") | |
| # specify the path to the model | |
| model_path = "deepseek-ai/deepseek-vl2-tiny" | |
| vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path) | |
| tokenizer = vl_chat_processor.tokenizer | |
| vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) | |
| vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() | |
| ## single image conversation example | |
| conversation = [ | |
| { | |
| "role": "<|User|>", | |
| "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.", | |
| "images": ["./images/visual_grounding_1.jpeg"], | |
| }, | |
| {"role": "<|Assistant|>", "content": ""}, | |
| ] | |
| # load images and prepare for inputs | |
| pil_images = load_pil_images(conversation) | |
| prepare_inputs = vl_chat_processor( | |
| conversations=conversation, | |
| images=pil_images, | |
| force_batchify=True, | |
| system_prompt="" | |
| ).to(vl_gpt.device) | |
| # run image encoder to get the image embeddings | |
| inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
| # run the model to get the response | |
| outputs = vl_gpt.language.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=prepare_inputs.attention_mask, | |
| pad_token_id=tokenizer.eos_token_id, | |
| bos_token_id=tokenizer.bos_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| max_new_tokens=512, | |
| do_sample=False, | |
| use_cache=True | |
| ) | |
| answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False) | |
| print(f"{prepare_inputs['sft_format'][0]}", answer) | |
| def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"): | |
| deepseek() | |
| def run_example_old(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"): | |
| model = models[model_id].eval() | |
| processor = processors[model_id] | |
| prompt = f"In this UI screenshot, what is the position of the element corresponding to the command \"{text_input}\" (with bbox)?" | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"}, | |
| {"type": "text", "text": prompt}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False | |
| ) | |
| print(output_text) | |
| text = output_text[0] | |
| object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>" | |
| box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>" | |
| object_ref = re.search(object_ref_pattern, text).group(1) | |
| box_content = re.search(box_pattern, text).group(1) | |
| boxes = [tuple(map(int, pair.strip("()").split(','))) for pair in box_content.split("),(")] | |
| boxes = [[boxes[0][0], boxes[0][1], boxes[1][0], boxes[1][1]]] | |
| scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) | |
| return object_ref, scaled_boxes, draw_bounding_boxes(image, scaled_boxes) | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Image", type="pil") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="OS-Copilot/OS-Atlas-Base-7B") | |
| text_input = gr.Textbox(label="User Prompt") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| model_output_text = gr.Textbox(label="Model Output Text") | |
| model_output_box = gr.Textbox(label="Model Output Box") | |
| annotated_image = gr.Image(label="Annotated Image") | |
| gr.Examples( | |
| examples=[ | |
| ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"], | |
| ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"], | |
| ], | |
| inputs=[input_img, text_input], | |
| outputs=[model_output_text, model_output_box, annotated_image], | |
| fn=run_example, | |
| cache_examples=True, | |
| label="Try examples" | |
| ) | |
| submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text, model_output_box, annotated_image]) | |
| demo.launch(debug=True) |