from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import StreamingResponse from fastapi.staticfiles import StaticFiles import shutil import cv2 import numpy as np import dlib from torchvision import transforms import torch.nn.functional as F import gradio as gr import os from io import BytesIO app = FastAPI() # Load model and necessary components model = None def load_model(): global model from vtoonify_model import Model model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') model.load_model('cartoon1') # Define endpoints @app.post("/upload/") async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)): global model if model is None: load_model() # Save the uploaded image locally with its original filename with open("uploaded_image.jpg", "wb") as buffer: shutil.copyfileobj(file.file, buffer) # Read the saved image using OpenCV frame = cv2.imread("uploaded_image.jpg") # Convert the image from BGR to RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Process the uploaded image aligned_face, instyle, message = model.detect_and_align_image(frame_rgb, top, bottom, left, right) processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1') # Convert processed image to bytes image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes() # Return the processed image as a streaming response return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg") # Mount static files directory app.mount("/", StaticFiles(directory="AB", html=True), name="static") # Define index route @app.get("/") def index(): return FileResponse(path="/app/AB/index.html", media_type="text/html")