Spaces:
Running
Running
from __future__ import annotations | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import FileResponse | |
from fastapi.staticfiles import StaticFiles | |
import shutil | |
import torch | |
from vtoonify_model import Model | |
app = FastAPI() | |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') | |
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]: | |
if 'illustration' in style_type: | |
self.color_transfer = True | |
else: | |
self.color_transfer = False | |
if style_type not in self.style_types.keys(): | |
return None, 'Oops, wrong Style Type. Please select a valid model.' | |
self.style_name = style_type | |
model_path, ind = self.style_types[style_type] | |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy') | |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path), | |
map_location=lambda storage, loc: storage)['g_ema']) | |
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item() | |
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device) | |
with torch.no_grad(): | |
exstyle = self.vtoonify.zplus2wplus(exstyle) | |
return exstyle, 'Model of %s loaded.'%(style_type) | |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False): | |
message = 'Error: no face detected! Please retry or change the photo.' | |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom]) | |
instyle = None | |
h, w, scale = 0, 0, 0 | |
if paras is not None: | |
h,w,top,bottom,left,right,scale = paras | |
H, W = int(bottom-top), int(right-left) | |
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results | |
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) | |
if scale <= 0.75: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
if scale <= 0.375: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] | |
with torch.no_grad(): | |
I = align_face(frame, self.landmarkpredictor) | |
if I is not None: | |
I = self.transform(I).unsqueeze(dim=0).to(self.device) | |
instyle = self.pspencoder(I) | |
instyle = self.vtoonify.zplus2wplus(instyle) | |
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left) | |
else: | |
frame = np.zeros((256,256,3), np.uint8) | |
else: | |
frame = np.zeros((256,256,3), np.uint8) | |
if return_para: | |
return frame, instyle, message, w, h, top, bottom, left, right, scale | |
return frame, instyle, message | |
#@torch.inference_mode() | |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int | |
) -> tuple[np.ndarray, torch.Tensor, str]: | |
if image is None: | |
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' | |
frame = cv2.imread(image) | |
if frame is None: | |
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.' | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
return self.detect_and_align(frame, top, bottom, left, right) | |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int | |
) -> tuple[np.ndarray, torch.Tensor, str]: | |
if video is None: | |
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' | |
video_cap = cv2.VideoCapture(video) | |
if video_cap.get(7) == 0: | |
video_cap.release() | |
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.' | |
success, frame = video_cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
video_cap.release() | |
return self.detect_and_align(frame, top, bottom, left, right) | |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]: | |
#print(style_type + ' ' + self.style_name) | |
if instyle is None or aligned_face is None: | |
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.' | |
if self.style_name != style_type: | |
exstyle, _ = self.load_model(style_type) | |
if exstyle is None: | |
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.' | |
with torch.no_grad(): | |
if self.color_transfer: | |
s_w = exstyle | |
else: | |
s_w = instyle.clone() | |
s_w[:,:7] = exstyle[:,:7] | |
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device) | |
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], | |
scale_factor=0.5, recompute_scale_factor=False).detach() | |
inputs = torch.cat((x, x_p/16.), dim=1) | |
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree) | |
y_tilde = torch.clamp(y_tilde, -1, 1) | |
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type)) | |
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name) | |
async def process_image(file: UploadFile = File(...)): | |
# Save the uploaded image locally | |
with open("uploaded_image.jpg", "wb") as buffer: | |
shutil.copyfileobj(file.file, buffer) | |
# Load the model (assuming 'cartoon1' is always used) | |
exstyle, load_info = model.load_model('cartoon1') | |
# Process the uploaded image | |
top, bottom, left, right = 200, 200, 200, 200 | |
aligned_face, _, input_info = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right) | |
processed_image, message = model.image_toonify(aligned_face, instyle=exstyle, exstyle=exstyle, style_degree=0.5, style_type='cartoon1') | |
# Save the processed image | |
with open("result_image.jpg", "wb") as result_buffer: | |
result_buffer.write(processed_image) | |
# Return the processed image | |
return FileResponse("result_image.jpg", media_type="image/jpeg", headers={"Content-Disposition": "attachment; filename=result_image.jpg"}) | |
app.mount("/", StaticFiles(directory="AB", html=True), name="static") | |
def index() -> FileResponse: | |
return FileResponse(path="/app/AB/index.html", media_type="text/html") | |