Spaces:
Running
Running
from fastapi import FastAPI, File, UploadFile,Form | |
from fastapi.responses import FileResponse, StreamingResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi import FastAPI, File, UploadFile | |
from pydantic import BaseModel | |
import numpy as np | |
import cv2 | |
import torch | |
from vtoonify_model import Model | |
app = FastAPI() | |
# Load the model | |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') | |
exstyle, message = model.load_model("cartoon1") | |
class ImageRequest(BaseModel): | |
image_file: UploadFile = File(...) | |
async def toonify_image(image_file: UploadFile = File(...)): | |
try: | |
contents = await image_file.read() | |
filename = image_file.filename | |
nparr = np.frombuffer(contents, np.uint8) | |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | |
aligned_face, instyle, message = model.detect_and_align_image(img, 200, 200, 200, 200) # Hardcoded values | |
toonified_img, message = model.image_toonify(aligned_face, instyle, exstyle, style_degree=0.5, style_type="cartoon1") | |
return {"toonified_image": toonified_img, "message": message, "filename": filename} | |
except Exception as e: | |
return {"error": str(e)} | |
app.mount("/", StaticFiles(directory="AB", html=True), name="static") | |
def index() -> FileResponse: | |
return FileResponse(path="/app/AB/index.html", media_type="text/html") | |