Ashrafb commited on
Commit
a898e11
·
verified ·
1 Parent(s): 83be299

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +15 -196
main.py CHANGED
@@ -1,214 +1,33 @@
1
- from __future__ import annotations
2
  from fastapi import FastAPI, File, UploadFile, Form
3
  from fastapi.responses import StreamingResponse
4
  from fastapi.staticfiles import StaticFiles
5
- import torch
6
  import shutil
7
  import cv2
8
  import numpy as np
9
  import dlib
10
  from torchvision import transforms
11
  import torch.nn.functional as F
12
- from vtoonify_model import Model # Importing the Model class from vtoonify_model.py
13
  import gradio as gr
14
- import pathlib
15
- import sys
16
- sys.path.insert(0, 'vtoonify')
17
-
18
- from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
19
- import torch
20
- import torch.nn as nn
21
- import numpy as np
22
- import dlib
23
- import cv2
24
- from model.vtoonify import VToonify
25
- from model.bisenet.model import BiSeNet
26
- import torch.nn.functional as F
27
- from torchvision import transforms
28
- from model.encoder.align_all_parallel import align_face
29
- import gc
30
- import huggingface_hub
31
  import os
32
  from io import BytesIO
33
 
34
  app = FastAPI()
35
 
36
- MODEL_REPO = 'PKUWilliamYang/VToonify'
 
37
 
38
- class Model():
39
- def __init__(self, device):
40
- super().__init__()
41
-
42
- self.device = device
43
- self.style_types = {
44
- 'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
45
- 'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26],
46
- 'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
47
- 'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
48
- 'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
49
- 'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
50
- 'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
51
- 'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
52
- 'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
53
- 'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
54
- 'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
55
- 'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
56
- 'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
57
- 'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
58
- 'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
59
- 'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
60
- 'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
61
- 'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
62
- 'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
63
- 'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
64
- 'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
65
- 'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
66
- }
67
-
68
- self.landmarkpredictor = self._create_dlib_landmark_model()
69
- self.parsingpredictor = self._create_parsing_model()
70
- self.pspencoder = self._load_encoder()
71
- self.transform = transforms.Compose([
72
- transforms.ToTensor(),
73
- transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
74
- ])
75
-
76
- self.vtoonify, self.exstyle = self._load_default_model()
77
- self.color_transfer = False
78
- self.style_name = 'cartoon1'
79
- self.video_limit_cpu = 100
80
- self.video_limit_gpu = 300
81
-
82
- def _create_dlib_landmark_model(self):
83
- return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/shape_predictor_68_face_landmarks.dat'))
84
-
85
- def _create_parsing_model(self):
86
- parsingpredictor = BiSeNet(n_classes=19)
87
- parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
88
- map_location=lambda storage, loc: storage))
89
- parsingpredictor.to(self.device).eval()
90
- return parsingpredictor
91
-
92
- def _load_encoder(self) -> nn.Module:
93
- style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
94
- return load_psp_standalone(style_encoder_path, self.device)
95
-
96
- def _load_default_model(self) -> tuple[torch.Tensor, str]:
97
- vtoonify = VToonify(backbone='dualstylegan')
98
- vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
99
- 'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
100
- map_location=lambda storage, loc: storage)['g_ema'])
101
- vtoonify.to(self.device)
102
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
103
- exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
104
- with torch.no_grad():
105
- exstyle = vtoonify.zplus2wplus(exstyle)
106
- return vtoonify, exstyle
107
-
108
- def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
109
- if 'illustration' in style_type:
110
- self.color_transfer = True
111
- else:
112
- self.color_transfer = False
113
- if style_type not in self.style_types.keys():
114
- return None, 'Oops, wrong Style Type. Please select a valid model.'
115
- self.style_name = style_type
116
- model_path, ind = self.style_types[style_type]
117
- style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
118
- self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
119
- map_location=lambda storage, loc: storage)['g_ema'])
120
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
121
- exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
122
- with torch.no_grad():
123
- exstyle = self.vtoonify.zplus2wplus(exstyle)
124
- return exstyle, 'Model of %s loaded.' % (style_type)
125
 
126
- def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
127
- message = 'Error: no face detected! Please retry or change the photo.'
128
- paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
129
- instyle = None
130
- h, w, scale = 0, 0, 0
131
- if paras is not None:
132
- h, w, top, bottom, left, right, scale = paras
133
- H, W = int(bottom-top), int(right-left)
134
- # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
135
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
136
- if scale <= 0.75:
137
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
138
- if scale <= 0.375:
139
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
140
- frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
141
- with torch.no_grad():
142
- I = align_face(frame, self.landmarkpredictor)
143
- if I is not None:
144
- I = self.transform(I).unsqueeze(dim=0).to(self.device)
145
- instyle = self.pspencoder(I)
146
- instyle = self.vtoonify.zplus2wplus(instyle)
147
- message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
148
- else:
149
- frame = np.zeros((256, 256, 3), np.uint8)
150
- else:
151
- frame = np.zeros((256, 256, 3), np.uint8)
152
- if return_para:
153
- return frame, instyle, message, w, h, top, bottom, left, right, scale
154
- return frame, instyle, message
155
-
156
- #@torch.inference_mode()
157
- def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
158
- ) -> tuple[np.ndarray, torch.Tensor, str]:
159
- if image is None:
160
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
161
- frame = cv2.imread(image)
162
- if frame is None:
163
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
164
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
165
- return self.detect_and_align(frame, top, bottom, left, right)
166
-
167
- def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
168
- ) -> tuple[np.ndarray, torch.Tensor, str]:
169
- if video is None:
170
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
171
- video_cap = cv2.VideoCapture(video)
172
- if video_cap.get(7) == 0:
173
- video_cap.release()
174
- return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
175
- success, frame = video_cap.read()
176
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
177
- video_cap.release()
178
- return self.detect_and_align(frame, top, bottom, left, right)
179
-
180
-
181
- def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
182
- #print(style_type + ' ' + self.style_name)
183
- if instyle is None or aligned_face is None:
184
- return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
185
- if self.style_name != style_type:
186
- exstyle, _ = self.load_model(style_type)
187
- if exstyle is None:
188
- return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
189
- with torch.no_grad():
190
- if self.color_transfer:
191
- s_w = exstyle
192
- else:
193
- s_w = instyle.clone()
194
- s_w[:,:7] = exstyle[:,:7]
195
-
196
- x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
197
- x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
198
- scale_factor=0.5, recompute_scale_factor=False).detach()
199
- inputs = torch.cat((x, x_p/16.), dim=1)
200
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
201
- y_tilde = torch.clamp(y_tilde, -1, 1)
202
- print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
203
- return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
204
-
205
- model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
206
-
207
-
208
  @app.post("/upload/")
209
  async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
 
210
  if model is None:
211
- return {"error": "Model not loaded."}
212
 
213
  # Save the uploaded image locally with its original filename
214
  with open("uploaded_image.jpg", "wb") as buffer:
@@ -221,8 +40,8 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
221
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
222
 
223
  # Process the uploaded image
224
- aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
225
- processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='illustration1-d')
226
 
227
  # Convert processed image to bytes
228
  image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes()
@@ -230,10 +49,10 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
230
  # Return the processed image as a streaming response
231
  return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")
232
 
233
-
234
  app.mount("/", StaticFiles(directory="AB", html=True), name="static")
235
 
236
-
237
  @app.get("/")
238
- def index() -> FileResponse:
239
  return FileResponse(path="/app/AB/index.html", media_type="text/html")
 
 
1
  from fastapi import FastAPI, File, UploadFile, Form
2
  from fastapi.responses import StreamingResponse
3
  from fastapi.staticfiles import StaticFiles
 
4
  import shutil
5
  import cv2
6
  import numpy as np
7
  import dlib
8
  from torchvision import transforms
9
  import torch.nn.functional as F
 
10
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  import os
12
  from io import BytesIO
13
 
14
  app = FastAPI()
15
 
16
+ # Load model and necessary components
17
+ model = None
18
 
19
+ def load_model():
20
+ global model
21
+ from vtoonify_model import Model
22
+ model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
23
+ model.load_model('cartoon1')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ # Define endpoints
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  @app.post("/upload/")
27
  async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
28
+ global model
29
  if model is None:
30
+ load_model()
31
 
32
  # Save the uploaded image locally with its original filename
33
  with open("uploaded_image.jpg", "wb") as buffer:
 
40
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
41
 
42
  # Process the uploaded image
43
+ aligned_face, instyle, message = model.detect_and_align_image(frame_rgb, top, bottom, left, right)
44
+ processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
45
 
46
  # Convert processed image to bytes
47
  image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes()
 
49
  # Return the processed image as a streaming response
50
  return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")
51
 
52
+ # Mount static files directory
53
  app.mount("/", StaticFiles(directory="AB", html=True), name="static")
54
 
55
+ # Define index route
56
  @app.get("/")
57
+ def index():
58
  return FileResponse(path="/app/AB/index.html", media_type="text/html")