Delete main.py
Browse files
main.py
DELETED
|
@@ -1,209 +0,0 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
from fastapi import FastAPI, File, UploadFile, Form
|
| 3 |
-
from fastapi.responses import StreamingResponse
|
| 4 |
-
from fastapi.staticfiles import StaticFiles
|
| 5 |
-
import torch
|
| 6 |
-
import shutil
|
| 7 |
-
import cv2
|
| 8 |
-
import numpy as np
|
| 9 |
-
import dlib
|
| 10 |
-
from torchvision import transforms
|
| 11 |
-
import torch.nn.functional as F
|
| 12 |
-
|
| 13 |
-
import gradio as gr
|
| 14 |
-
import pathlib
|
| 15 |
-
import sys
|
| 16 |
-
sys.path.insert(0, 'vtoonify')
|
| 17 |
-
from vtoonify_model import Model
|
| 18 |
-
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
|
| 19 |
-
import torch
|
| 20 |
-
import torch.nn as nn
|
| 21 |
-
import numpy as np
|
| 22 |
-
import dlib
|
| 23 |
-
import cv2
|
| 24 |
-
from model.vtoonify import VToonify
|
| 25 |
-
from model.bisenet.model import BiSeNet
|
| 26 |
-
import torch.nn.functional as F
|
| 27 |
-
from torchvision import transforms
|
| 28 |
-
from model.encoder.align_all_parallel import align_face
|
| 29 |
-
import gc
|
| 30 |
-
import huggingface_hub
|
| 31 |
-
import os
|
| 32 |
-
from io import BytesIO
|
| 33 |
-
|
| 34 |
-
app = FastAPI()
|
| 35 |
-
|
| 36 |
-
MODEL_REPO = 'PKUWilliamYang/VToonify'
|
| 37 |
-
|
| 38 |
-
class Model:
|
| 39 |
-
def __init__(self, device):
|
| 40 |
-
super().__init__()
|
| 41 |
-
|
| 42 |
-
self.device = device
|
| 43 |
-
self.style_types = {
|
| 44 |
-
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
|
| 45 |
-
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
self.landmarkpredictor = self._create_dlib_landmark_model()
|
| 49 |
-
self.parsingpredictor = self._create_parsing_model()
|
| 50 |
-
self.pspencoder = self._load_encoder()
|
| 51 |
-
self.transform = transforms.Compose([
|
| 52 |
-
transforms.ToTensor(),
|
| 53 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 54 |
-
])
|
| 55 |
-
|
| 56 |
-
self.vtoonify, self.exstyle = self._load_default_model()
|
| 57 |
-
self.color_transfer = False
|
| 58 |
-
self.style_name = 'cartoon1'
|
| 59 |
-
self.video_limit_cpu = 100
|
| 60 |
-
self.video_limit_gpu = 300
|
| 61 |
-
|
| 62 |
-
def _create_dlib_landmark_model(self):
|
| 63 |
-
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/shape_predictor_68_face_landmarks.dat'))
|
| 64 |
-
|
| 65 |
-
def _create_parsing_model(self):
|
| 66 |
-
parsingpredictor = BiSeNet(n_classes=19)
|
| 67 |
-
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
|
| 68 |
-
map_location=lambda storage, loc: storage))
|
| 69 |
-
parsingpredictor.to(self.device).eval()
|
| 70 |
-
return parsingpredictor
|
| 71 |
-
|
| 72 |
-
def _load_encoder(self) -> nn.Module:
|
| 73 |
-
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
|
| 74 |
-
return load_psp_standalone(style_encoder_path, self.device)
|
| 75 |
-
|
| 76 |
-
def _load_default_model(self) -> tuple[torch.Tensor, str]:
|
| 77 |
-
vtoonify = VToonify(backbone='dualstylegan')
|
| 78 |
-
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 79 |
-
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
| 80 |
-
map_location=lambda storage, loc: storage)['g_ema'])
|
| 81 |
-
vtoonify.to(self.device)
|
| 82 |
-
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
|
| 83 |
-
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
|
| 84 |
-
with torch.no_grad():
|
| 85 |
-
exstyle = vtoonify.zplus2wplus(exstyle)
|
| 86 |
-
return vtoonify, exstyle
|
| 87 |
-
|
| 88 |
-
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
|
| 89 |
-
if 'illustration' in style_type:
|
| 90 |
-
self.color_transfer = True
|
| 91 |
-
else:
|
| 92 |
-
self.color_transfer = False
|
| 93 |
-
if style_type not in self.style_types.keys():
|
| 94 |
-
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
| 95 |
-
self.style_name = style_type
|
| 96 |
-
model_path, ind = self.style_types[style_type]
|
| 97 |
-
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
|
| 98 |
-
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
|
| 99 |
-
map_location=lambda storage, loc: storage)['g_ema'])
|
| 100 |
-
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
| 101 |
-
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
| 102 |
-
with torch.no_grad():
|
| 103 |
-
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
| 104 |
-
return exstyle, 'Model of %s loaded.' % (style_type)
|
| 105 |
-
|
| 106 |
-
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
| 107 |
-
message = 'Error: no face detected! Please retry or change the photo.'
|
| 108 |
-
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
| 109 |
-
instyle = None
|
| 110 |
-
h, w, scale = 0, 0, 0
|
| 111 |
-
if paras is not None:
|
| 112 |
-
h, w, top, bottom, left, right, scale = paras
|
| 113 |
-
H, W = int(bottom-top), int(right-left)
|
| 114 |
-
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
| 115 |
-
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
| 116 |
-
if scale <= 0.75:
|
| 117 |
-
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
| 118 |
-
if scale <= 0.375:
|
| 119 |
-
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
| 120 |
-
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
| 121 |
-
with torch.no_grad():
|
| 122 |
-
I = align_face(frame, self.landmarkpredictor)
|
| 123 |
-
if I is not None:
|
| 124 |
-
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
| 125 |
-
instyle = self.pspencoder(I)
|
| 126 |
-
instyle = self.vtoonify.zplus2wplus(instyle)
|
| 127 |
-
message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
|
| 128 |
-
else:
|
| 129 |
-
frame = np.zeros((256, 256, 3), np.uint8)
|
| 130 |
-
else:
|
| 131 |
-
frame = np.zeros((256, 256, 3), np.uint8)
|
| 132 |
-
if return_para:
|
| 133 |
-
return frame, instyle, message, w, h, top, bottom, left, right, scale
|
| 134 |
-
return frame, instyle, message
|
| 135 |
-
|
| 136 |
-
#@torch.inference_mode()
|
| 137 |
-
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
| 138 |
-
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 139 |
-
if image is None:
|
| 140 |
-
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
|
| 141 |
-
frame = cv2.imread(image)
|
| 142 |
-
if frame is None:
|
| 143 |
-
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
|
| 144 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 145 |
-
return self.detect_and_align(frame, top, bottom, left, right)
|
| 146 |
-
|
| 147 |
-
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
| 148 |
-
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 149 |
-
if video is None:
|
| 150 |
-
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
|
| 151 |
-
video_cap = cv2.VideoCapture(video)
|
| 152 |
-
if video_cap.get(7) == 0:
|
| 153 |
-
video_cap.release()
|
| 154 |
-
return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
|
| 155 |
-
success, frame = video_cap.read()
|
| 156 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 157 |
-
video_cap.release()
|
| 158 |
-
return self.detect_and_align(frame, top, bottom, left, right)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
|
| 162 |
-
if instyle is None or aligned_face is None:
|
| 163 |
-
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
| 164 |
-
if self.style_name != style_type:
|
| 165 |
-
exstyle, _ = self.load_model(style_type)
|
| 166 |
-
if exstyle is None:
|
| 167 |
-
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
| 168 |
-
with torch.no_grad():
|
| 169 |
-
s_w = instyle.clone()
|
| 170 |
-
s_w[:, :7] = exstyle[:, :7]
|
| 171 |
-
|
| 172 |
-
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
|
| 173 |
-
x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
| 174 |
-
scale_factor=0.5, recompute_scale_factor=False).detach()
|
| 175 |
-
inputs = torch.cat((x, x_p / 16.), dim=1)
|
| 176 |
-
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
|
| 177 |
-
y_tilde = torch.clamp(y_tilde, -1, 1)
|
| 178 |
-
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
|
| 179 |
-
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
|
| 180 |
-
|
| 181 |
-
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
@app.post("/upload/")
|
| 185 |
-
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
| 186 |
-
if model is None:
|
| 187 |
-
return {"error": "Model not loaded."}
|
| 188 |
-
|
| 189 |
-
# Save the uploaded image locally
|
| 190 |
-
with open("uploaded_image.jpg", "wb") as buffer:
|
| 191 |
-
shutil.copyfileobj(file.file, buffer)
|
| 192 |
-
|
| 193 |
-
# Process the uploaded image
|
| 194 |
-
aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
|
| 195 |
-
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
|
| 196 |
-
|
| 197 |
-
# Convert processed image to bytes
|
| 198 |
-
image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes()
|
| 199 |
-
|
| 200 |
-
# Return the processed image as a streaming response
|
| 201 |
-
return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
@app.get("/")
|
| 208 |
-
def index() -> FileResponse:
|
| 209 |
-
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|