Ashrafb commited on
Commit
8f0c37d
·
verified ·
1 Parent(s): 677f1c0

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -209
main.py DELETED
@@ -1,209 +0,0 @@
1
- from __future__ import annotations
2
- from fastapi import FastAPI, File, UploadFile, Form
3
- from fastapi.responses import StreamingResponse
4
- from fastapi.staticfiles import StaticFiles
5
- import torch
6
- import shutil
7
- import cv2
8
- import numpy as np
9
- import dlib
10
- from torchvision import transforms
11
- import torch.nn.functional as F
12
-
13
- import gradio as gr
14
- import pathlib
15
- import sys
16
- sys.path.insert(0, 'vtoonify')
17
- from vtoonify_model import Model
18
- from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
19
- import torch
20
- import torch.nn as nn
21
- import numpy as np
22
- import dlib
23
- import cv2
24
- from model.vtoonify import VToonify
25
- from model.bisenet.model import BiSeNet
26
- import torch.nn.functional as F
27
- from torchvision import transforms
28
- from model.encoder.align_all_parallel import align_face
29
- import gc
30
- import huggingface_hub
31
- import os
32
- from io import BytesIO
33
-
34
- app = FastAPI()
35
-
36
- MODEL_REPO = 'PKUWilliamYang/VToonify'
37
-
38
- class Model:
39
- def __init__(self, device):
40
- super().__init__()
41
-
42
- self.device = device
43
- self.style_types = {
44
- 'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
45
-
46
- }
47
-
48
- self.landmarkpredictor = self._create_dlib_landmark_model()
49
- self.parsingpredictor = self._create_parsing_model()
50
- self.pspencoder = self._load_encoder()
51
- self.transform = transforms.Compose([
52
- transforms.ToTensor(),
53
- transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
54
- ])
55
-
56
- self.vtoonify, self.exstyle = self._load_default_model()
57
- self.color_transfer = False
58
- self.style_name = 'cartoon1'
59
- self.video_limit_cpu = 100
60
- self.video_limit_gpu = 300
61
-
62
- def _create_dlib_landmark_model(self):
63
- return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/shape_predictor_68_face_landmarks.dat'))
64
-
65
- def _create_parsing_model(self):
66
- parsingpredictor = BiSeNet(n_classes=19)
67
- parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
68
- map_location=lambda storage, loc: storage))
69
- parsingpredictor.to(self.device).eval()
70
- return parsingpredictor
71
-
72
- def _load_encoder(self) -> nn.Module:
73
- style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
74
- return load_psp_standalone(style_encoder_path, self.device)
75
-
76
- def _load_default_model(self) -> tuple[torch.Tensor, str]:
77
- vtoonify = VToonify(backbone='dualstylegan')
78
- vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
79
- 'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
80
- map_location=lambda storage, loc: storage)['g_ema'])
81
- vtoonify.to(self.device)
82
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
83
- exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
84
- with torch.no_grad():
85
- exstyle = vtoonify.zplus2wplus(exstyle)
86
- return vtoonify, exstyle
87
-
88
- def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
89
- if 'illustration' in style_type:
90
- self.color_transfer = True
91
- else:
92
- self.color_transfer = False
93
- if style_type not in self.style_types.keys():
94
- return None, 'Oops, wrong Style Type. Please select a valid model.'
95
- self.style_name = style_type
96
- model_path, ind = self.style_types[style_type]
97
- style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
98
- self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
99
- map_location=lambda storage, loc: storage)['g_ema'])
100
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
101
- exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
102
- with torch.no_grad():
103
- exstyle = self.vtoonify.zplus2wplus(exstyle)
104
- return exstyle, 'Model of %s loaded.' % (style_type)
105
-
106
- def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
107
- message = 'Error: no face detected! Please retry or change the photo.'
108
- paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
109
- instyle = None
110
- h, w, scale = 0, 0, 0
111
- if paras is not None:
112
- h, w, top, bottom, left, right, scale = paras
113
- H, W = int(bottom-top), int(right-left)
114
- # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
115
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
116
- if scale <= 0.75:
117
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
118
- if scale <= 0.375:
119
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
120
- frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
121
- with torch.no_grad():
122
- I = align_face(frame, self.landmarkpredictor)
123
- if I is not None:
124
- I = self.transform(I).unsqueeze(dim=0).to(self.device)
125
- instyle = self.pspencoder(I)
126
- instyle = self.vtoonify.zplus2wplus(instyle)
127
- message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
128
- else:
129
- frame = np.zeros((256, 256, 3), np.uint8)
130
- else:
131
- frame = np.zeros((256, 256, 3), np.uint8)
132
- if return_para:
133
- return frame, instyle, message, w, h, top, bottom, left, right, scale
134
- return frame, instyle, message
135
-
136
- #@torch.inference_mode()
137
- def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
138
- ) -> tuple[np.ndarray, torch.Tensor, str]:
139
- if image is None:
140
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
141
- frame = cv2.imread(image)
142
- if frame is None:
143
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
144
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
145
- return self.detect_and_align(frame, top, bottom, left, right)
146
-
147
- def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
148
- ) -> tuple[np.ndarray, torch.Tensor, str]:
149
- if video is None:
150
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
151
- video_cap = cv2.VideoCapture(video)
152
- if video_cap.get(7) == 0:
153
- video_cap.release()
154
- return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
155
- success, frame = video_cap.read()
156
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
157
- video_cap.release()
158
- return self.detect_and_align(frame, top, bottom, left, right)
159
-
160
-
161
- def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
162
- if instyle is None or aligned_face is None:
163
- return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
164
- if self.style_name != style_type:
165
- exstyle, _ = self.load_model(style_type)
166
- if exstyle is None:
167
- return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
168
- with torch.no_grad():
169
- s_w = instyle.clone()
170
- s_w[:, :7] = exstyle[:, :7]
171
-
172
- x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
173
- x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
174
- scale_factor=0.5, recompute_scale_factor=False).detach()
175
- inputs = torch.cat((x, x_p / 16.), dim=1)
176
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
177
- y_tilde = torch.clamp(y_tilde, -1, 1)
178
- print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
179
- return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
180
-
181
- model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
182
-
183
-
184
- @app.post("/upload/")
185
- async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
186
- if model is None:
187
- return {"error": "Model not loaded."}
188
-
189
- # Save the uploaded image locally
190
- with open("uploaded_image.jpg", "wb") as buffer:
191
- shutil.copyfileobj(file.file, buffer)
192
-
193
- # Process the uploaded image
194
- aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
195
- processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
196
-
197
- # Convert processed image to bytes
198
- image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes()
199
-
200
- # Return the processed image as a streaming response
201
- return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")
202
-
203
-
204
- app.mount("/", StaticFiles(directory="AB", html=True), name="static")
205
-
206
-
207
- @app.get("/")
208
- def index() -> FileResponse:
209
- return FileResponse(path="/app/AB/index.html", media_type="text/html")