|
from fastapi import FastAPI, File, UploadFile,Form |
|
from fastapi.responses import FileResponse, StreamingResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi import FastAPI, File, UploadFile |
|
from pydantic import BaseModel |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from vtoonify_model import Model |
|
import shutil |
|
import os |
|
|
|
app = FastAPI() |
|
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
@app.post("/upload/") |
|
async def upload_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)): |
|
try: |
|
with open("temp.jpg", "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
|
|
result_image, _, _ = model.detect_and_align_image("temp.jpg", top, bottom, left, right) |
|
|
|
|
|
result_path = "result.jpg" |
|
cv2.imwrite(result_path, result_image) |
|
|
|
|
|
with open(result_path, "rb") as result_buffer: |
|
result_image_bytes = result_buffer.read() |
|
|
|
|
|
os.remove("temp.jpg") |
|
os.remove(result_path) |
|
|
|
return {"result_image": result_image_bytes} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
app.mount("/", StaticFiles(directory="AB", html=True), name="static") |
|
|
|
@app.get("/") |
|
def index() -> FileResponse: |
|
return FileResponse(path="/app/AB/index.html", media_type="text/html") |
|
|
|
|